Advanced Programming
Exam

Exam number 167

November 2024

1 Introduction

The functionality is in general as desired, and any minor problems are discussed
in the subsections below. I have made tests for all the edge cases (and generic
cases) that I could think of, I furthermore asked two LLM’s (ChatGPT4o and
Claude3-5-Sonnet) to find further edge cases that might not be handled, as well
as using the --enable-coverage functionality to make sure all code-branches
are checked. This does not guarantee all edge cases are handled but does reduce
the likelihood of such existing (and not being handled correctly). I also have one
issue when dealing with deadlocks/stuck computations, where I can only test
that they timeout (after 3 seconds), and thus assume that they will be stuck
forever, which I have deemed to be reasonable. Stuck tests are commented out
in the test suite, but are left if the reader wants to ensure they are stuck.

1.1 Tuples

For the implementation of the tuples, I first made sure it could parse empty
tuples and tuples with > 1 elements correctly, and also with or without projec-
tions. For the evaluation, I use a mapM to evaluate all the sub-expressions within
the tuple. For the projection, I first make sure that it projects on a tuple, and
that the index is positive but smaller than the length of the tuple. I have tested
parsing and evaluating for many cases such as nested tuples, nested projections,
long tuples, empty tuples, etc. I therefore deem that the base functionality of
the Tuples/Projection to be correct.

1.2 Loops and stepping

For the implementation of the for and while loop I follow the evaluation imple-
mentation structure as presented in the assignment. However, in the for loop,
it is not specified if i should be accessible within the body, but I assume that
it should be accessible and thus tested it with

evalTest
"For loop with ’i’ in body"

(ForLoop ("x", CstInt 0) ("i", CstInt 5) (Add (Var "x") (Var "i")))
(Vallnt 10)

For parsing, the two loops have the same prefix of loop, and therefore I needed
to include a try within the parser as

try $ ForLoop -- try since the for loops were too greedy

<$> ((,) <$> (1Keyword "loop" #> 1lVName) <*> (1String "=" *> pExp))
<x> ((,) <$> (1lKeyword "for" *> 1lVName) <*> (1String "<" *> pExp))
<*> (1Keyword "do" *> pExp),

WhileLoop

<$> ((,) <$> (1lKeyword "loop" *> 1lVName) <*> (1String "=" x> pExp))

<*> (1Keyword "while" *> pExp)

<*> (lKeyword "do" *> pExp)

For both parsing and the evaluating of the loops, I have tested the base
functionality, and edge cases such as incomplete definitions, errors in the bound,
body and init, false bound, negative bound, etc. I therefore deem the imple-
mentation to be functional within generic use cases.

1.3 && and ||

For the parsing of && and | | I first removed left recursion and ambiguity, which
can be seen in question 1. To keep the hierarchy of the operators, I had to create
separate parser groups for && and ||, with || having the lower precedents.
Implementing the evaluation of the pure interpreter mainly requires controlling
for any errors. As the evaluation order is not given, my implementation evaluates
from left to right, and thus in e.g. el || e2, if el succeeds, it will always be
returned, as it ”finishes” first.

Testing in the pure case, I mostly focused on parsing and basic evaluation, and
more specifically the hierarchy of the operators is followed. As all the tests
passed as expected, I deem the basic functionality of && and || to be okay.

1.4 Simulated concurrent interpreter

For the simulated concurrent interpreter, I made the step function using a
helper function step’ that contains a boolean flag stepDone, such that I can
make sure each (sub-)expression in &% and || are both only evaluated once.
Further, the && steps until both expressions are done, or if one fails and just
returns that. For || it steps until one is done first, and returns that. There
is however an issue with el || e2, in that when stepping, it steps both el
and e2 and then looks to see if any finishes, thus if el finished the next step
of e2 should not have happened. This could be fixed by first stepping el and
then casing on that result, but that gives rise to a new issue: If el gets stuck
e.g. in an infinite KvGet the other expression e2 is never able to evaluate and
return. This could in turn also be fixed with other mechanisms (such as looking
for progress in the expressions) but was deemed to be unnecessary for the time
being, but worth keeping in mind. With the minor problem mentioned in mind,

the implementation does work for all other edge cases I could find, and thus I
deem at least the general functionality of the implementation to be okay.

1.5 KVDB

For the KVDB I implemented the API, where the main implementation is the
serverLoop, which is spawned using the genServer module. The serverLoop
handles the KvGet and KvPut by defining the messages the server can receive to
be GetMsg for KvGet and PutMsg for KvPut. The serverLoop then cases on that,
such that for the GetMsg we simply give back the value if the requested key is in
the DB. If the key is not yet put, we save it in a list of pending requests. This
leads to the PutMsg, that whenever a key-value is inserted, we look if there are
any pending requests for that key, and if so, send the value to them, and then
remove them from the pending requests. I made several test cases to ensure the
basic functionality worked, as well as blocking of threads when kvGet does not
receive a value, which I tested like

testCase "kvGet blocks a thread if the key is not yet present" $ do
db <- startKVDB :: IO (KVDB Int String)
resultVar <- newEmptyMVar
resultVar2 <- newEmptyMVar
_ <~ forkIO $ do
val <- kvGet db 2
putMVar resultVar val
kvPut db 3 "three"
_ <- forkIO $ do
val <- kvGet db 3
putMVar resultVar2 val
threadDelay 1000000
isEmpty <- isEmptyMVar resultVar2
isEmpty Q7= True
kvPut db 2 "two"
threadDelay 100000
val <- takeMVar resultVar
val @?= "two"
val2 <- takeMVar resultVar2
val2 @7= "three"

This test ensures that a thread can not continue until kvGet gets its value. This
could lead to infinite loops and could be avoided by e.g. implementing a timeout
in either the server loop or directly in the kvGet, but as we wanted the kvGet
to block, I decided not to implement this.

1.6 Concurrent interpreter

The concurrent interpreter is implemented using the jobAdd function from the
SPC to evaluate the && and || concurrently. Both && keep waiting until the
SPC reports back that both the jobs are done, and then returns that. The
|| simply waits until one expression is successful, and then returns that. The
killing of threads is discussed in question 7.

The implementation is tested for basic functionality, such as handling failures,

and that all the normal computations work. I also test the concurrency with
regard to deadlocks, which are discussed in question 7. I thus deem the imple-
mentation to work for the given cases I could find.

2 Questions

21 1

The full grammar represents the parser with no ambiguity and the left recursion
removed can be seen below:

Exp := Expl

Expl := Exp2 Expl’
Expl’ := "||" Exp2 Expl’ | (* empty *)

Exp2 := Exp3 Exp2’
Exp2’ := "&&" Exp3 Exp2’ | (* empty *)

Exp3 := Exp4 Exp3’
Exp3’ := "==" Exp4 Exp3’ | (* empty *)

Exp4 := Exp5 Exp4’
Exp4’ := "+" Expb Exp4’ | "-" Expb5 Exp4’ | (* empty *)

Expb := LExp Expb’

Exp5’ := "x" LExp Exp5’ | "/" LExp Exp5’ | (* empty *)
LExp := "if" Exp "then" Exp "else" Exp
["\\" var "->" Exp
| "let" var "=" Exp "in" Exp
| "loop" var "=" Exp "for" var "<" Exp "do" Exp
| "loop" var "=" Exp "while" Exp "do" Exp
| FExp

FExp := Atom FExp’
FExp’ := Atom FExp’ | "." int FExp’ | (* empty *)

Atom := baseAtom Atom’

Atom’> := "." int Atom’ |(* empty *)
baseAtom := var

| int

| bool

I ll(ll ll)ll

| ll(u EXP n)n

I n (" EXP Exps Il) n
| "put" Atom Atom
| "get" Atom

Exps := "," Exp Exps | "," Exp

I use helper non-terminals like Exp1’ to avoid left recursion. In the implemen-
tation of the parser, it follows the grammar by making separate parsers for each
priority group, such that e.g. || has the lowest priority and * & / has the
highest operator priority. The grammar does not explicitly denote white-space
handling and that variable names must not be a keyword, but the parser is
implemented to handle that.

22 2

In my implementation of the Tuple case in eval, I use the mapM to evaluate the
expressions, thus they are evaluated left to right (as mapM goes left to right), as
can be seen in the code:

eval (Tuple es) = do
vals <- mapM eval es
pure $ ValTuple vals

To make sure the evaluation order of tuples is left from right, such that in (el,
e2) el is evaluated before e2. I made some tests where el depends on e2 and
where e2 depends on el. I further made longer tuples like (el,...,e5), where
the next expression depends on the previous. I make the dependencies using
KvGet and KvPut. As an example see below from the pure interpreter:

evalTestFail
"Order of evaluation in tuple (KvGet before KvPut)"
(Tuple [KvGet (CstInt 1), KvPut (CstInt 1) (CstlInt 2)]),
evalTest
"Order of evaluation in tuple (KvPut before KvGet)"
(Tuple [KvPut (CstInt 1) (CstInt 2), KvGet (CstInt 1)])
(ValTuple [Vallnt 2, Vallnt 2])

23 3

Regarding the normal operations, the implementation I have of the evalua-
tion method eval all errors regarding operations are handled within the evalM
monad and captured using failure (such as failure "Division by zero"),
thus they result in an ErrorOp and returns Left e and not as an exception,
and the only way a job is marked as DoneCrashed is when an exception is being
thrown within the job, as we can see below

let doJob = do
jobAction job
send (spcChan state) $ MsgJobDone jobid

onException :: SomeException -> I0 ()
onException _ =
send (spcChan state) $ MsgJobCrashed jobid

Regarding using the IO functions, such as KvGet and KvPut, the implementation
of the KVDB does not throw any exceptions, and will e.g. on an unknown key
wait, and not throw any exception. And the way IORef is used is controlled,
like in the Both0f0p I make sure to initialize the newIORef before writing or
reading to it. However given we are in the inherent chaotic 10, there might
be some unforeseen errors leading to an exception, but not something I would
deem as likely or often to happen.

24 4

In my implementation of the simulated concurrent interpreter, using a KvGet on
a key never put, or if the put is dependent on the KvGet we end in a deadlock.
However, since the simulated interpreter is deterministic, and since we know
how the implementation is made, we can quite easily determine if an expression
will be deadlocked. Some are more trivial than others to notice, e.g. in the
following example where there is only one KvGet:

evalTestFail
"Test of deadlock with only one KvGet"
(KvGet (CstInt 1))

Another quite trivial example is when two KvGet’s are dependent on each other
like in this case

evalTestFail
"Test BothOf deadlock with conditional KvGet and KvPut"
(BothOf
(If (Eql (KvGet (CstInt 1)) (CstlInt 2))
(KvPut (CstInt 2) (CstInt 1))
(CstInt 0))
(If (Eql (KvGet (CstInt 2)) (CstInt 1))
(KvPut (CstInt 1) (CstInt 2))
(CstInt 0))
)

We know that both KvGet’s can never get the values, since the put for the key
they’re waiting for is dependent on the other, and thus stuck forever. One that
is a bit more tricky to spot is this example

evalTestFail
"Nested BothOf with conditional KvPut that results in deadlock"
(BothOf —- 1
(BothOf -- 2

(If (Eql (KvGet (CstInt 1))(CstInt 1)) -- 3
(KvPut (CstInt 2) (CstInt 1)) -- 4
(CstInt 0)) - 5

(KvPut (CstInt 1) (CstInt 1))) - 6

(BothOf -- 7
(KvPut (CstInt 1) (CstInt 2)) -- 8

(KvGet (CstInt 2))) -- 9
)

Here we see that 9 depends on 4, and line 4 is only run if the KvGet (CstInt
1) in 3 is equal to 1. There are two KvPut with a key of 1 but with different
values: 6 & 8. Thus if need to have the condition in 3 to be true, we need to
have 6 executed and then 3. In this simulated case, we will always have the
condition false, and thus we end with 9 being stuck. However, if we e.g. just
swap 3-5 with 6 to get this:

evalTest
"Nested BothOf with conditional KvPut that never results in deadlock (3-5 and
6 swap)"
(BothOf - 1
(BothOf -- 2
(KvPut (CstInt 1) (CstInt 1)) -- 6
(If (Eql (KvGet (CstInt 1)) (CstInt 1)) -- 3
(KvPut (CstInt 2) (CstInt 1)) - 4
(CstInt 0)) -- 5
)
(BothOf —- 7
(KvPut (CstInt 1) (CstInt 2)) -- 8
(KvGet (CstInt 2))) -- 9
)
(ValTuple [ValTuple [ValInt 1, ValInt 1], ValTuple [ValInt 2, ValInt 111)

This test never gets into a deadlock and will pass (with slightly different results
although). So as long as you know the deterministic order of evaluation, it is
easy to determine any deadlocks.

25 5

Yes, the concurrent interpreter can go into a deadlock, but it is non-deterministic
due to the somewhat unpredictable concurrency. Of course, we have the dead-
locks that are trivial as with the simulated interpreter, e.g. when a KvGet does
not have a corresponding textttKvPut, or if we try to KvPut which is dependent
on the corresponding KvGet. These are easy to find, as they don’t necessarily
depend on the order of evaluation. But as we saw from a test case from the
previous question:

evalTest
"Nested BothOf with conditional KvPut that sometimes results in deadlock"
(BothOf -- 1
(BothOf -- 2

(If (Eql (KvGet (CstInt 1)) (CstInt 1)) —- 3
(KvPut (CstInt 2) (CstInt 1)) -- 4
(CstInt 0)) -- 5
(KvPut (CstInt 1) (CstInt 1)) —- 6
)
(BothOf -- 7
(KvPut (CstInt 1) (CstInt 2)) -- 8
(KvGet (CstInt 2))) -- 9
)
(ValTuple [ValTuple [ValInt 1, ValInt 1], ValTuple [ValInt 2, ValInt 111)

In this case, the order of evaluation mattered about it going into a deadlock, as
discussed in the last question. But as we don’t exactly know which are evaluated
in what order, we have a non-deterministic case that might lead to a deadlock.
So in the cases where the order of evaluation matters, it can be difficult and/or
impossible to know if it goes into a deadlock.

26 6

In my simulated concurrent implementation of el || e2 I use a helper function
step’ to recursively step each nested expression in the computation. In the case
of a One0£f0p, the function looks to see if el or e2 is done with their evaluations,
and if so, it just calls itself recursively with only that expression, and therefore
effectively discards the other expression. In the following code snippet we see
the case where el is done (there is a similar case for when e2 is done discarding
el):

in case (el’, e2’) of
(Pure vi, _) ->
let m’ = c vl
in step’ stepDone’ env state’ m’

And since the infinite expression is no longer in the computation, we no longer
use any resources on the infinite loop in e2.

2.7 7

In my concurrent implementation of el || e2, I utilize the SPC’s jobAdd func-
tion that creates separate threads to evaluate the two expressions concurrently.
Thus if el finishes first, e2 will keep getting evaluated if not explicitly stopped.
Thus in my code, whenever el or e2 finishes, I call SPC’s cancelJob on the
other expression job-id to cancel it and kill the thread evaluating the expression.
Whenever a job is done, I case on the result, and if it succeeds it ends in the
following case:

case result of
Just (Right v) -> do
let otherJobld = if doneJobId == jobIdl then jobId2 else jobIdl
jobCancel spc otherJobId
runEvalM spc kvdb env (c v)

This makes sure to explicitly stop the possible infinite loop in e2, and we there-
fore don’t use any resources after at least one of the expressions is evaluated.

