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1 Introduction

This study aims to investigate whether French manufacturing firms exhibit constant returns

to scale (CRS), using the Cobb-Douglas production function as a model. We will analyze

panel data gathered between 1968 and 1979 to achieve this, however, we will only look at the

first three years in this paper. Understanding whether French manufacturing firms exhibit

CRS can provide important insights into the efficiency of their production processes. To

analyze this, we will use the first-difference estimator. Our finding indicates that the firms

in question do not demonstrate CRS; instead, they exhibit decreasing returns to scale. This

outcome is reasonable given that constant returns to scale represent a theoretical construct

that is seldom realized in empirical reality.

2 Econometric theory

2.1 Model

To analyse the production output, we use the Cobb-Douglas production function as our model

(1).

F (K,L) = AKβKLβL (1)

Where K denotes the amount of capital, L is the amount of labour and A represents the total

factor productivity (TFP), A > 0. The pair (βK , βL) are the parameters we are interested in

analyzing. Since our data has the dependent variable as log-deflated sales and the independent

variables as the log of adjusted capital stock and log of employment, we can easily manipulate

the equation (1) by taking the log.

log(F (K,L)) = log(AKβKLβL) = log(A) + βK log(K) + βLlog(L) (2)

From the equation (2) we can derive it into a linear econometric model as follows below.

yit = βKkit + βLlit + vit (3)

1



Eksamensnummer: 4, 33 & 36 30. marts 2023

Here vit contains TFP, where TFP contains both time-varying and time-invariant unobser-

vable productivity factors, therefore vit = Ait = uit+ci. To investigate if the function exhibits

CRS, the function has to have the characteristics F (λK, λL) = λF (K,L). This is only the

case for a Cobb-Douglas function when βK + βL = 1, since

F (λK, λL) = A(λK)βK (λL)βL = AλβKKβKλβLLβL = AλβK+βLKβKLβL (4)

As a result, our main hypothesis is stated as

H0 : βK + βL = 1 HA : βK + βL ̸= 1

where we will be testing this using the model given in (3).

2.2 Estimator

To estimate βK and βL we will use the first difference estimator (FD). The FD estimator is

given by

β̂FE = (∆X ′∆X)
−1

(∆X ′∆y) (5)

Here β̂ =

β̂K

β̂L

 where ∆X is the matrix representation of ∆x stacked, that together with

∆y can be expressed as the difference between two time periods shown below in (6):

yit − yit−1 = βK (kit − kit−1) + βL (lit − lit−1) + (uit − uit−1)

⇐⇒

∆yit = ∆xitβ +∆uit

(6)

Note that ∆xit =
[
∆kit ∆lit

]
. Therefore we lose the first period due to differencing, and the

dimensions of ∆X is, therefore, [N(T−1)×K] = [882×2] and ∆y is [N(T−1)×1] = [882×1].

2



Eksamensnummer: 4, 33 & 36 30. marts 2023

2.2.1 Consistency assumptions

For FD to give us the correct parameter estimate, we need it to be consistent, meaning that

we get the true value of βK and βL asymptotically. If this is not fulfilled our estimations might

deviate from the true values. To ensure consistency of the estimator, we need to satisfy FD.1

and FD.2. According to FD.1, the data should demonstrate strict exogeneity.

FD.1: E(uit|xi, ci) = 0, t = 1, 2, ..., T (7)

The strict exogeneity assumption, FD.1 (7), states that the error term from all time peri-

ods must be uncorrelated not only with all independent variables but also with their time-

invariant components.

FD.2 : rankE (∆X′
i∆Xi) = rank

(
T∑
t=2

E (∆x′
it∆xit)

)
= K (8)

FD.2 (8), which is the rank condition, requires that the rank of the expected value of ∆X′
i∆Xi

must be K to attain full rank. Here, ∆Xi has the dimensions [T − 1×K], and the resulting

matrix product has the dimensions [K ×K].

2.2.2 Effenciency assumptions

For the FD estimator to be efficient, the assumption FD.3 must hold.

FD.3: E(eie
′
i|xi, ci) = σ2

eIT−1 (9)

Where eit = ∆uit for t = 2, 3, . . . , T . The assumptions require that the error term is uncorre-

lated with any of the dependent variables or their time-invariant components. Consequently,

the error term is homoskedastic. Consistency is a crucial aspect of regression analysis. There-

fore, while FD.3 is an important consideration, it should be given secondary priority relative

to FD.1 and FD.2.
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3 Emperical analysis

To estimate the values of βK and βL we have the choice between three different methods

namely, fixed effects (FE), random effects (RE), and first differences (FD). We have already

excluded Pooled OLS since it would not be logical to assume E(x′
itci) = 0. First, we test our

strict exogeneity (FD.1) assumption by including lead variables in the regression and then

using a Wald test to see whether the coefficients of the leads are 0. With a Wald test statistic

of 11.19 and a p-value of 0.0037, we can see that we do not have strict exogeneity (see table

2). This will be addressed in our discussion.

We can then make a Hausman test to examine if E[cixit] ̸= 0 if this is the case then the RE

estimator would be inconsistent. If this is not the case, then the RE estimator is both consi-

stent and more efficient than FE and FD. The Hausman test makes the null and alternative

hypotheses of

H0 : E(x′
ici) = 0 HA : E(x′

ici) ̸= 0

The results of the Hausman test can be seen in table 3. We see that there is strong evidence

against the null hypothesis at a 95% confidence level. Hence we reject the null hypothesis

(0.05 > 0.00), therefore the RE estimator would be inconsistent and we will continue with

FE or FD.

To compare FE and FD, which are both consistent under the same assumptions, the efficiency

however can differ. We know that FE is more efficient if cov(ui, uit−1) = 0. Our assumption

is however that cov(ui, uit−1) ̸= 0 as we believe that there is a correlation in the error terms.

We have tested this in a serial correlation test this can be seen in table 4. We can also see

that the standard error of the FE and FD are almost the same, meaning that they are almost

equally efficient and therefore we will choose FD as our estimator, for reasons we will discuss

in our discussion. See table 1 for FE and FD regression results. We can now test our main

null hypothesis on whether the production function exhibits CRS with a Wald test

H0 : βK + βL = 1 HA : βK + βL ̸= 1
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We conducted a Wald test which yielded a test statistic of 95.86 and a corresponding p-value

of 0.00. Therefore, if we disregard the violation of the strict exogeneit assumption causing

the estimator to not be consistent, we are able to say that French manufacturing firms do

not exhibit CRS in their production.

4 Discussion and conclusion

The results that we have derived in our empirical analysis depend on our three assumptions

for the fixed effect estimator are valid. From the previous section, we have shown there is

no strict exogoneity, which violates our first assumption and causes our estimate to be in-

consistent. One could have used other estimator methods such as an FD-IV or GMM for the

estimator to be consistent. The advantage of using first differences over fixed effects, when

strict exogoneity is not present, is that this estimator only creates correlation within one lag,

where FE is more problematic since ẍit involves all time periods.

Our objective was to investigate whether French manufacturing firms exhibited CRS, ba-

sed on an empirical analysis using econometric theory. In order to ensure the validity of our

findings, we made the assumption of strict exogeneity. We tested this assumption and found

it to be unlikely, however, we continued to use the FD estimator.

If the firms were to exhibit constant return to scale then βk + βL = 1. Using FD, we got

βk = 0.550946 and βL = 0.0381129. Using the Wald test from our FD results, we can determi-

ne whether the null hypothesis is true. The Wald test statistic (95.86, see table 1) indicated

a substantial deviation from CRS. Therefore we can conclude that the firms in question do

not exhibit CRS. However keeping in mind that our estimator is not consistent, there is a

chance that our findings might not depict the true parameters.
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5 Appendix

Tabel 1: FE/FD Regression results

FE regression FD regression
Parameter names Theta_hat t-values Theta_hat t-values

lcap 0.6004 12.0916 0.5509 10.9944
(0.0497) (0.0501)

lemp 0.0502 1.0533 0.0381 0.8728
(0.0477) (0.0437)

R-Squared 0.284 0.217

Sigma-squard 0.008 0.013

Wald test statistics 133.96 95.86
p-value 0.00 0.00
No. of observations 441 441

Note: Regression results from using the FE and FD estimator with 3 time periods and 441
obersvations. Robust standard errors are given below each estimations in paranthesis.

Tabel 2: Exogeneity test

β Se t-values
lcap 0.4599 0.0550 8.3615
lemp 0.0580 0.0674 0.8617
Labor lead 0.0656 0.0702 0.9342
Capital lead 0.1552 0.0504 3.0768
R2 = 0.221 σ2 = 0.013

H0 : βLaborlead = βCapitallead = 0
HA : βLaborlead ̸= βCapitallead ̸= 0
Wald test statistic: 11.19, p-value: 0.0037

Note: Strict exogeneity test using a lead variable, and using a Wald test to test the null hypot-
hesis.
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Tabel 3: Hausman Test

βfe βre βdiff

0.6004 0.6912 -0.0909
0.0502 0.2476 -0.1974

Hausman test statistic 30.82
p-value 0.00.

Note: Fixed effect regression, random effects regression and their difference. Hausman test sta-
tistic and its corresponding p-value. 3 time periods and 441 firms where regressed upon.

Tabel 4: Serial Correletation test

β Se t-values
eit−1 -0.1849 0.0483 -3.8295
R2 = 0.032 σ2 = 0.013

Note: Serial correlation test to test the correlation of the error term
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1

To express the success probability 𝑃(𝑦𝑖 |𝑥𝑖) in terms of model parameters, we first substitute

𝑦𝑖 with the latent outcome variable 𝑦∗
𝑖
> 0 and its definition

𝑃(𝑦𝑖 = 1|𝑥𝑖) = 𝑃(𝑦∗𝑖 > 0|𝑥𝑖) = 𝑃(𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖 > 0|𝑥𝑖) = 𝑃(𝜀𝑖 > −𝛽0 − 𝛽1𝑥𝑖 |𝑥𝑖) (1)

Since we know the distribution of 𝜀𝑖 |𝑥𝑖 is Cauchy distributed, (1) can be rewritten further to

include it

1 − 𝑃(𝜀𝑖 < −𝛽0 − 𝛽1𝑥𝑖 |𝑥𝑖) = 1 − 𝐹 (−𝛽0 − 𝛽1𝑥𝑖, 𝜇) (2)

Where 𝐹 (𝑧; 𝜇) is the CDF of the Cauchy distribution, (2) can be fully expressed as

1 −
(
1

2
+ 1

𝜋
arctan(−𝛽0 − 𝛽1𝑥𝑖 − 𝜇)

)
=
1

2
− 1

𝜋
arctan(−𝛽0 − 𝛽1𝑥𝑖 − 𝜇) (3)

2

From equation (1) we had:

𝑃(𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖 > 0|𝑥𝑖)

This can be rewritten by multiplying all coefficients and error terms by a positive constant

𝑐 into:

𝑃(𝛽0 · 𝑐 + 𝛽1𝑥𝑖 · 𝑐 + 𝜀𝑖 · 𝑐 > 0|𝑥𝑖)

Here our choice probability does not change, meaning that we can identify up to a scale

factor, but we cannot identify separately from the scale of the error term, therefore we could

have 𝛽0 = 𝑐𝛽0, 𝛽1 = 𝑐𝛽1 and 𝜀 = 𝑐𝜀. Without identification, we cannot estimate consistently,

as there is not a unique maximum as the sample objective function can be maximized for

different values of 𝑐.

1
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3

When given a random sample {𝑦𝑖, 𝑥𝑖}𝑖=1,..,𝑁 it is possible to compute the density of 𝑦𝑖 condi-

tional on 𝑥𝑖 as the following:

𝑓 (𝑦𝑖 |𝑥𝑖; 𝛽) = 𝐺 (𝑥𝑖𝛽)𝑦𝑖 [1 − 𝐺 (𝑥𝑖𝛽)] (1−𝑦𝑖) (4)

Since equation (3) is the success probability, we can substitute it for 𝐺 (·) as(
1

2
+ 1

𝜋
arctan(−𝛽0 − 𝛽1𝑥𝑖 − 𝜇)

) 𝑦𝑖 [
1 −

(
1

2
+ 1

𝜋
arctan(−𝛽0 − 𝛽1𝑥𝑖 − 𝜇)

)] (1−𝑦𝑖)
(5)

Subsequently, the log-likelihood contribution for observation 𝑖 becomes the following

ℓ𝑖 (𝛽) = 𝑦𝑖 ln
[
1

2
+ 1

𝜋
arctan(−𝛽0 − 𝛽1𝑥𝑖 − 𝜇)

]
+ (1 − 𝑦𝑖) ln

[
1 −

(
1

2
+ 1

𝜋
arctan(−𝛽0 − 𝛽1𝑥𝑖 − 𝜇)

)]
(6)

Since 𝜇 = 0, the Cauchy distribution is symmetric around zero we have the characteristics

𝑓 (𝑧) = 𝑓 (−𝑧), and therefore we can simplify equation (6) further into

ℓ𝑖 (𝛽) = 𝑦𝑖 ln
(
1

2
+ 1

𝜋
arctan (𝛽0 + 𝛽1𝑥𝑖)

)
+ (1 − 𝑦𝑖) ln

(
1

2
− 1

𝜋
arctan (𝛽0 + 𝛽1𝑥𝑖)

)
(7)

4

To estimate the parameters, we are using the maximum likelihood estimator (MLE), since

we are using a latent variable model. Furthermore, as we already know the distribution of 𝑦𝑖

given 𝑥𝑖 in (5), and thus the log-likelihood contribution from (7). In contrast to task 2, we now

have 𝜇 = 0, and therefore a unique set of parameter values gives the maximum likelihood.

Therefore the MLE assumptions for consistency are fulfilled, and the estimator will converge

asymptotically to the true parameters. Since MLE is an M-estimator, the parameter can be

estimated with

𝛽𝑀𝐿𝐸 = argmin
𝛽

1

1000

1000∑︁
𝑖=1

−ℓ𝑖 (𝛽) (8)

2
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Instead of just "brute forcing"to find the arg min, we utilize the derivatives of the likelihood

contributions (9), to make our minimizer converge faster to a minimum

∇𝛽ℓ𝑖 (𝛽) =
𝑓 (𝛽0 + 𝛽1𝑥𝑖) 𝑥𝑖 [𝑦𝑖 − 𝐹 (𝛽0 + 𝛽1𝑥𝑖)]
𝐹 (𝛽0 + 𝛽1𝑥𝑖) (1 − 𝐹 (𝛽0 + 𝛽1𝑥𝑖))

(9)

With 𝐹 as the CDF and 𝑓 as the PDF of the Cauchy distribution.

Estimation results are given in table 1, where 𝛽0 = 0.9357 and 𝛽1 = 2.6798.

5

To calculate the partial effect we will simply look at the change in the probability of success

when we have discrete changes in the regressor (𝑥𝑖).

𝑃𝐸Δ𝑥

(
𝑥0
)
= 𝑃

(
𝑦 = 1|𝑥0 + Δ𝑥0

)
− 𝑃

(
𝑦 = 1|𝑥0

)
(10)

We can expand this using equation (3) since that is our conditional probability expanded:

(
1

2
− 1

𝜋
arctan(−𝛽0 − 𝛽1(𝑥𝑖 + Δ𝑥𝑖) − 𝜇)

)
−
(
1

2
− 1

𝜋
arctan(−𝛽0 − 𝛽1𝑥𝑖 − 𝜇)

)
(11)

Rewriting this and taking into account that 𝜇 = 0

arctan(𝛽0 + 𝛽1(𝑥𝑖 + Δ𝑥𝑖))
𝜋

− arctan(𝛽0 + 𝛽1𝑥𝑖)
𝜋

(12)

Equation (12) is our expression for the partial effects. We can use this equation alongside our

MLE parameter estimates from table 1 to calculate the partial effects. As 𝑥 is a categorical

variable with three levels, there are two partial effects to estimate, as the intercept of 𝛽0

describes the probability of success when 𝑥 = 0. Our partial effects can be seen in the table

(2).

Thereby we have that the partial effect of going from x=0 to x=1 is 0.174632552. And the

partial effect of going from x=1 to x=2 is 0.03574447
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6

In order to interpret our PEs, we need standard errors for these estimates, which can be

estimated using the delta method. Under the delta method, we assume that our estimator

𝜃 has an asymptotically normal distribution. By definition of MLE, we know that this as-

sumption is valid, because of the central limit theorem, and therefore this method is justified.

The delta method states then that the transformation of the MLE function of 𝜃 also has an

asymptotically normal distribution.

The Delta Method computes the standard errors for partial and marginal effects for h(𝜽)

based on an estimated covariance matrix for 𝜽. Our partial effects are a function of the esti-

mated parameters, h(𝜃), which is a 𝐾-vector. In order to use the Delta Method we define a

𝐾 × 𝐾 (= 2 × 2) matrix of derivatives of h which we call,

g = ∇𝜃h(𝜽). (13)

Then calculate the following asymptotic variance of h(𝜽)

Avar[h(𝜽)] = gAvar(𝜽) g′ (14)

Where 𝑔 is defined as

g𝑘 = 𝑓 (𝛽0, 𝛽1)𝑥11 − 𝑓 (𝛽0, 𝛽1)𝑥10 (15)

with 𝑥11 = [1, 1]𝑇 , 𝑥10 = [1, 0]𝑇 , which represents the change in 𝑥1 = 0 → 1, and 𝑓 (·) is the

Cauchy PDF. We use the same method to calculate the standard errors for the PE when

𝑥1 = 1 → 2. To calculate the covariance matrix to estimate (14), we simply just scale the

inverse Hessian with 1/𝑁 we got from our minimization routine during MLE.

From this estimation, we get standard errors of 0.02603 for 𝑃𝐸0→1 and of 0.00381 for 𝑃𝐸1→2

using the delta method, which can be seen in the table 2. Standard errors can also be

estimated using bootstrapping, which gave us almost identical standard errors, again see

table 2.
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7

To test the hypothesis of 𝑥𝑖 has no impact on the probability of success, we could test if 𝛽1 is

significantly different from 0. If 𝛽1 = 0, then 𝑥𝑖 will not have any impact on the success (𝑦𝑖).

Therefore we could formulate a null hypothesis of

𝐻0 : 𝛽1 = 0 𝐻𝐴 : 𝛽1 ≠ 0

Since we only need to know the direction of 𝛽1, we can test the significance of our parameter

coefficients directly from our MLE estimation e.g. using a likelihood ratio test, but since we

already computed the standard errors for the partial effects in task 6, we can just test the

equivalent null hypothesis of them simultaneously being 0.

𝐻0 : 𝑃𝐸0→1 = 𝑃𝐸1→2 = 0 𝐻𝐴 : 𝑃𝐸0→1 ≠ 0 or 𝑃𝐸1→2 ≠ 0

To test this null hypothesis we use our t-values from both of our partial effects to control

whether or not they are significantly different from 0. From table 2 we can see the t-values.

We know that on a significance level of 𝛼 = 0.05 our critical value is ≈ 1.9624 as we have

1000 − 2 = 998 degrees of freedom. As both of our t-values lies above the critical value, we

reject our null hypothesis. We can therefore conclude that our partial effects are significantly

different from 0, leading us to the conclusion that 𝑥𝑖 has an impact on the probability of

success.
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Appendix

Tabel 1: Maximum likelihood estimation results

MLE Table
Parameter estimates 𝛽 t-values

𝑥0 0.9357 6.6028
(0.1417)

𝑥1 2.6798 5.1154
(0.5239)

No. observations: 1000
mean logl -0.358009

Notes: Minimize used 17 iterations, 18 function evaluations and 18 evaluations of the
jacobian

Tabel 2: PE results

Partial effects
PE-value SE Delta method SE Bootstrap t-values

PE1 0.17468 0.02603 0.02659 6.7116

PE2 0.03574 0.00381 0.00389 9.3914

No. of PEs: 2

Notes: The delta method used the inverse Hessian scaled by 1/𝑁 as the covariance matrix.

The bootstrap method used 1000 samples with repetition. T-value derived from Delta

method SE
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