
NuMe Noter

Magnus Goltermann

Indhold
1 Mathematical preliminaries and computer arithmetic 3

1.1 Number systems . 3
1.2 Decreasing power method . 3
1.3 Long division method . 4
1.4 Floats . 4

1.4.1 Method to convert binary float to decimal float 5
1.4.2 Multiplication algorithm (Decimal to binary) 5
1.4.3 Infinity long comma numbers 5
1.4.4 Infinity long comma numbers to fraction 5

1.5 Truncating error . 6
1.6 Rounding . 6
1.7 Normalized scientific notation . 6
1.8 Machine number . 6

1.8.1 Absolute error when converting to closest machine number 7
1.8.2 Relative error when converting to closest machine number 7
1.8.3 Roundoff error with operations 7

1.9 Significant digits . 8
1.10 Loss of significance theorem . 8

2 Non-Linear Equations 9
2.1 Bisection method . 9

2.1.1 Global convergence . 9
2.1.2 Absolute error . 10
2.1.3 Convergence rate . 10

2.2 Newtons method . 10
2.2.1 Error . 11
2.2.2 Convergence . 11
2.2.3 For rooting non-linear vector function 11

2.3 Evaluation of polynomials . 11
2.3.1 Nested multiplication . 12

2.4 Horners method . 12
2.4.1 Polynomial division relationship 13
2.4.2 Horner derivatives . 13

2.5 Localization theorem . 13

1

2.5.1 Using the "reversed
13

3 Systems of Linear Equations 14
3.1 Solving linear systems . 14
3.2 Solve using factorization . 14

3.2.1 With LU factorization . 14
3.2.2 With QR factorization . 14

3.3 LU factorization - Crout . 14
3.3.1 Doolittle . 15

3.4 Cholesky factorization . 15
3.5 Norm . 15

3.5.1 2 norm of vector . 16
3.5.2 Infinity norm of vector . 16
3.5.3 1 norm of vector . 16

3.6 Matrix norm . 16
3.6.1 Infinity norm of a matrix 16
3.6.2 1 norm of a matrix . 17
3.6.3 2 norm of a matrix . 17

3.7 Condition number . 17
3.8 Neumann series . 17

3.8.1 Using nested multiplication 18
3.9 Splitting matrix Q . 18

3.9.1 Jacobi method . 18
3.9.2 Gauss-Seidel method . 18
3.9.3 SOR method . 19

4 Interpolation 19
4.1 Theorem of polynomial interpolations 19
4.2 Secret sharing . 19
4.3 Lagrange interpolation . 19
4.4 Newton divided difference method 20
4.5 Spline interpolation . 21

4.5.1 Example of quadratic spline interpolation 22

5 Numerical Linear Algebra 24
5.1 Power method . 24

5.1.1 Inverse power method . 24
5.2 Gershgorins theorem . 25

5.2.1 Using the inverse . 25
5.3 Gram-Schmidt process . 25
5.4 Least square solutions . 26
5.5 QR factorization - Householder 26
5.6 Singular value decomposition (SVD - A=PDQ form) 27

5.6.1 Approach for SVD . 27
5.6.2 VSU form . 28

2

5.7 Minimal solutions . 28
5.7.1 Consistent . 28
5.7.2 Inconsistent . 28
5.7.3 Pseudoinverse . 29

6 Numerical Differentiation 29
6.1 Connection between analytical and numerical differentiation . . . 29

6.1.1 Deriving using Taylor series 29
6.2 Deriving O(n2) using f(x+ h

2) 30
6.2.1 Deriving using Taylor series 30

6.3 Richardson Extrapolation . 30
6.4 Differentiation using interpolation 31

7 Numerical Integration 31
7.1 Average based method . 31

7.1.1 Dividing segments using trapozoid rule 31
7.2 Integrating using interpolation 32
7.3 Method of undetermined coefficients 32
7.4 Simpsons rule . 33
7.5 Gaussian Quadrature . 33

8 Monte-Carlo Simulation 34
8.1 . 34
8.2 Numerical integration . 34

1 Mathematical preliminaries and computer arit-
hmetic

1.1 Number systems
Form of any number can be given on the form

±(dN . . . d0)b = s(

N∑
i=0

di · bi)10

Where s is the sign, di is how many of the i’th number that is given and b is
the base. b = 2 is binary and b = 10 i decimal. di can always take any number
between [0, b− 1]

1.2 Decreasing power method
Converts decimal to binary.
Choosing the largest n where d10−2n ≥ 0, subtract to that and repeat. Example
with 175:

d10 − 2n ≥ 0 ⇐⇒ 175− 128 ≥ 0

3

Flip the bit at 27 = 128 and repeat with 175− 128 = 47

d10 − 2n ≥ 0 ⇐⇒ 47− 32 ≥ 0

Flip the bit at 25 = 32 and repeat with 47− 32 = 15

d10 − 2n ≥ 0 ⇐⇒ 15− 8 ≥ 0

Flip the bit at 23 = 8 and repeat with 15− 8 = 7

d10 − 2n ≥ 0 ⇐⇒ 7− 4 ≥ 0

Flip the bit at 22 = 4 and repeat with 7− 4 = 3

d10 − 2n ≥ 0 ⇐⇒ 3− 2 ≥ 0

Flip the bit at 21 = 2 and repeat with 3− 2 = 1

d10 − 2n ≥ 0 ⇐⇒ 1− 1 ≥ 0

Flip the bit at 20 = 1 and repeat with 1 − 1 = 0 The method is done and we
have 175 = 128 + 32 + 8 + 4 + 2 + 1 = (10101111)2

1.3 Long division method
Divide by 2, flip the bit if remainder is 1 and continue until it reaches 0. The
bits are "reversed"so we find the least significant first and the most significant
last (smallest to largest.) Example with 175:

175 = 87 · 2 + 1

87 = 43 · 2 + 1

43 = 21 ·+1

21 = 10 ·+1

10 = 5 · 2 + 0

5 = 2 · 2 + 1

2 = 1 · 2 + 0

1 = 0 · 2 + 1

Therefore 175 = (10101111)2 (reading from the bottom and up!).

1.4 Floats
Floats can be given on the form

±(dn . . . d0, d−1, d−2 . . . d−m)b = s

n∑
i=−m

di · bi

Example: (101, 01)2 = 1 · 22 + 0 · 21 + 1 · 20, 0 · 2−1 + 1 · 2−2 = 4 + 1, 1
4 = 5, 25

4

1.4.1 Method to convert binary float to decimal float

Multiply the binary number m times with 2, until it is not a float. Convert it
to decimal and then divide by 2m. Example

(101, 01)2 · 2 = (1010, 1)2

(1010, 1)2 · 2 = (10101)2

Then (101, 01)2 = (10101)2
22 = (5, 25)10

1.4.2 Multiplication algorithm (Decimal to binary)

Multiply by 2, if the new number is > 1 then flip the bit, and reapeat with the
number after the comma until its 0 after the comma. Example:

0, 8125 · 2 = 1, 625→ 1

0, 625 · 2 = 1, 25→ 1

0, 25 · 2 = 0, 5→ 0

0, 5 · 2 = 1, 0→ 1

Therefore (0, 8125)10 = (0, 1101)2

1.4.3 Infinity long comma numbers

When using the Multiplication algorithm we can sometimes run into an infinite
loop (e.g. 0, 1 to binary).

1.4.4 Infinity long comma numbers to fraction

Find how many times, m, you have to multiply 2, to get the repeating sequence
to right after the comma.
Then find how many time, k, you have to multiply 2 with, to get the repeating
sequence right before the comma.
The fraction will then be given as

x

y

Where x is the repeating sequence in binary and y is 2k − 2m. Example:

5

1.5 Truncating error
When floats are to large we can truncate (cut of) at a certain point. The trun-
cating error is smaller than the point just before where we cut of:

|(x)b − (x̂)b| < b−n

Where x is the part we keep, x̂ is the part we loose and n is digits truncation
(how many numbers after the comma did we keep).

1.6 Rounding
If the number after the point we want to truncate at is larger than 5, then add
one to the number we truncate at.
The rounding error is

|(x)− (x̃)| ≤ 1

2
b−n

Which is half of the truncating error, since the value at n+ 1 lost is at most 0, 5
with rounding where with truncating it is at most 1.

1.7 Normalized scientific notation
Consists of a mantissa and an exponent. The mantissa is normalized, so can
only have a given number.

It is easy to get the mantissa to a normalized form just by adding of subtra-
cting from the exponent. Example:
5, 001 · 100 can be normalized to 0, 5001 · 101

1.8 Machine number
Machine numbers are used to represent binary floats in a computer. using nor-
malized scientific notation for binay

6

The mantissa is now f where we remember the to put (1, f) to improve
accuracy instead of just (0,mantissa).
Converting machine number to decimal is given as

x = (−1)s · (1, f) · 2e

Where m = e− 1023, e is the exponent, f is the mantissa and s is the sign bit.

1.8.1 Absolute error when converting to closest machine number

With a 64 bit machine number and using the defintion for rounding error the
error is given as

|x− x̃| ≤ 2m−53

1.8.2 Relative error when converting to closest machine number

If the machine number is "rounding down"to x− then it is

|x− x
−

x
| ≤ 2m−53

q · 2m
=

1

q
· 2−53

and since 1 ≤ q < 2 the relative error is

|x− x
−

x
| ≤ 2−53

When rounding up to x+ it is the same

|x− x
+

x
| ≤ 2−53

Relative error is always the same, but the absolute error is larger when the
number is smaller.

1.8.3 Roundoff error with operations

fl(x) = x(1 + δx)

where fl is the function that converts the float to a machine number with a
relative error of δx.

7

The operations of x and y therefore has the error given as:

1.9 Significant digits
Numbers after the comma we are interested in are significant digits.
Relative error when truncating at the significant digits can be calculated as:

xTrunc − xreal
xreal

1.10 Loss of significance theorem
We will lose at least p bits and at most q bits in precision when doing the
operation x− y Where

x = r · 2n, where 1

2
≤ r < 1

y = s · 2m, where
1

2
≤ s < 1

2−q ≤ 1− x

y
≤ 2−p

Example of use:

8

Therefore the operation (0, 1001)2 · 21 − (0, 1)2 · 21 looses at most 2−3 bits.

2 Non-Linear Equations

2.1 Bisection method
To find root of a function.

Given an interval of between a and b, compare the point in the middle,c
c = a+b

2 , with f(a) · f(c) and f(b) · f(c), and then choose the interval where
f(c) · x is < 0. Repeat for a given number of iterations or if a condition/stop
criteria is reached like |f(c)| < ε (y going close to 0) or |b − a| < δ (interval
getting very small).
Precondition: f(a) · f(b) > 0 (has to be a root between a and b). If there are
more roots in the interval, it will only find one.

2.1.1 Global convergence

The interval will always get halved each iteration, and therefore will the size of
the interval after n iteration be

(bn − an) = (
1

2
)n(b0 − a0)

We can therefore solve how many iterations to do to recieve a given precision δ:

(
1

2
)n(b0 − a0) < δ

And since the interval goes towards 0, it will always find a root.

9

2.1.2 Absolute error

The error must be less than or equal to half of the interval after n iterations,
using c as the estimate:

|en| = |cn − root| ≤
1

2
(bn − an)

And from previous we knoow the size after n iterations, and therefore the error
will just be that times a half:

(
1

2
)1+n(b0 − a0) ≤ δ

2.1.3 Convergence rate

If we know the error after k iterations, then the k+1 step must have half the
error. This follows a linear convergence rate.

2.2 Newtons method
Starting at an x and corresponding f(x) value, get the tangent at f(x), and
then use the intercept between the tangent and the x-axis as the new x, and
repeat. The update is given as

xn+1 = xn −
f(x)

f ′(x)

The algorithm is to stop at either max iterations, f(x) < ε (close to 0) or if
|xn+1 − xn| < δ (if it does not get much closer).
Precondition: f ′(x) 6= 0

10

2.2.1 Error

The error of the Newtons method is defind as

en = xn − root

Using the newton update we know that

en+1 = en −
fn
f ′n

2.2.2 Convergence

Newtons method converges quadratically O(n2).

2.2.3 For rooting non-linear vector function

Given a vector function f̄ , a function that calculated the gradient (Jacobian
matrix) of the function ∆f̄ and a vector containing the start values ~x0. First
calculate the J matrix given by

Then solving the system of equations

Jh̄ = −f̄(x0)

The new estimation is then given by

x̄1 = x̄0 + h̄

Continue until max iteration, |f̄(x̄1)| < ε or if |x̄1)− x̄0)| < δ

2.3 Evaluation of polynomials
A polynomial of degree n is given by

p(x) =

n∑
i=0

ai · xi

Where a is a list of coefficients.
Calculating this naively will use n2+n

2 + (n− 1) flops (operations), which makes
it O(n2).

11

2.3.1 Nested multiplication

Take a polonium, factorize by taking an x out of the parenthesis and adding the
constant, and repeat. Example:

2.4 Horners method
Horners method is defined as

Or more intuitively in a table form:

Example for finding p(2) when p(z) = 3z4 + 2z3 − 3z2 + 2z − 1:

The method uses nested multiplication and only uses a linear number of flops,
and is therefore O(n)

12

2.4.1 Polynomial division relationship

Given a polynomial p with degree n and q with degree n-1 given with

p(z) =

n∑
i=0

ai · zi and q(z) =

n−1∑
i=0

bi · zi

Then the relationship is

p(z) = (z − z0)q(z) + p(z0)

Where (z − z0) is how many times q(z) can be multiplied by to get p(z) with
p(z0) as the remainder.

2.4.2 Horner derivatives

From the relation above we have p′(z0) = q(z0) (z0 is given as a value).
When using Horners method, the bottom of the table (b values) can be used to
find the derivative value of p, and can be continued to find second derived and
so on.
Example:

2.5 Localization theorem
Roots of a given polynomial is within the disc at (0, 0) with radius ρ which is
given as

ρ = 1 +
1

|an|
max0≤k≤n{|ak|}

Where c = max0≤k≤n{|ak|}, which is just the largest coefficient in absolute
value.

2.5.1 Using the "reversed"

The "reversed"polynomial is defined by a polynomial which have the exponents
reversed:
If p(z) =

∑n
i=0 ai · zi then the "reversed is given by

s(z) = zn · p(1

z
) = an + an−1z + . . . a0z

n

13

The two polynomials have the same roots, which means we can extend the
localization theorem such that the roots can not be with the circle with a radius
of 1

ρ :

3 Systems of Linear Equations

3.1 Solving linear systems
Solving the equation Ax = b. If A has numbers at all positions, it is dense,
otherwise it is sparse.
If dense, then use a factorization method, and if sparse use a iterative method.
Factorization methods are exact, but costly time and memory wise. Iterative
methods are fast and does not cost much memory, but are approximations.

3.2 Solve using factorization
3.2.1 With LU factorization

If A = LU then we have to solve LUx = b. We can then set Ux = z, and then
solve Lz = b for z using forward substitution and then solve Ux = z using
backwards substitution.

3.2.2 With QR factorization

If Ax = b and A = QR then we have to solve QRx = b.
Set Rx = z, and solve Qz = b. This can be done easily since Q is orthonormal,
which has the property QTQ = I, and therefore the solution is

Qz = b ⇐⇒ QTQz = QT b ⇐⇒ z = QT b

Then solve Rx = z using backwards substitution.

3.3 LU factorization - Crout
Factorized into a lower (L) and an upper (U) matrix. In crout the diagonal of
the U matrix is 1

Using matrix multiplication to make a system of equations to solve in specific
order. e.g for A00 to get U00:

A00 = L00 · U00 + 0 · 0 + 0 · 0 · · · ⇐⇒ A00 = L00 · 1

14

Then we can solve for L10:

A10 = L10 · U00 + 1 · 0 + 0 · 0 · · · ⇐⇒ A10 = L10

The general method is to first solve a column in L, then a row in U and so on.
You will get more and more parts in every equation along the way, but always
only one unknown.

3.3.1 Doolittle

Like crout but with 1 on the diagonal of the L matrix.

Opposite "direction"than crout, so find a row in U first, then a column in L and
so on.

3.4 Cholesky factorization
Works for a quadratic symmetric matrix (and positive definite)

A = LLT

L is a lower triangular matrix. Using same principle as LU factorization with
matrix multiplication.

A00 = L00L00 ⇐⇒
√
A00 = L00

If A is an 3x3 matrix then L is defined with

3.5 Norm
All points when a norm of a vector (when equal to 1, e.g. ||x̄||2 = 1) can be
illustrated as

15

3.5.1 2 norm of vector

Defined by

||x̄||2 = (

n∑
i=1

x2
i)

1
2

Corresponds to the euclidean length of the vector.

3.5.2 Infinity norm of vector

||x̄||∞ = max1≤i≤n|xi|

Largest absolute element.

3.5.3 1 norm of vector

||x̄||1 = (

n∑
i=1

xi)

Sum of all the values in absolute termns

3.6 Matrix norm
3.6.1 Infinity norm of a matrix

Given as

||A||∞ = max1≤i≤n

n∑
j=1

|aij |

Take the sum of all rows (using absolute values) in a matrix, then the infinity
norm is the largest of the row sums.

16

3.6.2 1 norm of a matrix

Given as

||A||∞ = max1≤j≤n

n∑
i=1

|aij |

Take the sum of all columns (using absolute values) in a matrix, then the infinity
norm is the largest of the column sums.

3.6.3 2 norm of a matrix

Given as
||A||2 = max1≤i≤n|σi|

Where σ is a singular value of A. or as

||A||2 =
√
ρ(ATA)

Where ρ is a function that gives the spectral radius. Where

ρ(ATA) = max1≤i≤nλi

Where λ is an eigenvalue of ATA. It just finds the largest eigenvalue of ATA.
In short: The 2 matrix norm is the square root of largest eigenvalue of ATA

3.7 Condition number
When solving a linear system of equation like

Ax = b

Then when there is an error in either A or b, then the error is "scaled"by a
condition number. The bigger the condition number, the less useful are the
answers. The condition number is given by

K(A) = ||A−1|||A|||

3.8 Neumann series
A is quadrtric and ||A|| < 1 then I − A is invertible and then the following is
true

(I −A)−1 =

∞∑
k=0

Ak

And for some matrix B where B = I −A then the inverse of B is just

B−1 = (I −A)−1 =

∞∑
k=0

Ak

17

3.8.1 Using nested multiplication

To reduce the number of matrix multiplications we can calculate then sum using
nested multiplication: Going form O(n3) to a faster O(n2), and if A is sparse
we can get O(n).

3.9 Splitting matrix Q
A linear system of equations is given as Ax = b then

Ax = b ⇐⇒ Qx = (Q−A)x+ b

A can be divided into a lower triangular matrix plus the diagonal plus an
upper triangular matrix as

A = L+D + U

The idea is then to choose a Q matrix and the iterate on

Qxk+1 = (Q−A)xk + b ⇐⇒ xk+1 = (I −Q−1A)xk +Q−1b

Where xk is an approximate solution to Ax = b (we only use the above notation
as theoretical, since calculating Q−1 is very heavy computationally).

3.9.1 Jacobi method

Using the definitions of splitting matrix, and setting Q = D then we have

Qxk+1 = (Q−A)xk+b ⇐⇒ Dxk+1 = (D−L−D−U)xk+b ⇐⇒ Dxk+1 = b−(L+U)xk

The i’th element in x can then be defined as

xk+1
i =

bi −
∑i−1
j=0 Lijx

k
j −

∑n
j=i+1 Uijx

k
j

Dii

3.9.2 Gauss-Seidel method

Setting Q = D + L:

(D + L)xk+1 = (D + L− L−D − U)xk + b = b− Uxk

The i’th element in x can then be defined as

xk+1
i =

bi −
∑n
j=i+1 Uijx

k
j −

∑i−1
j=0 Lijx

k
j

Dii

18

3.9.3 SOR method

Setting Q = 1
w (D + wL)

(
1

w
(D + wL))xk+1 = (

1

w
(D + wL)− L−D − U)xk + b = b− Uxk

⇐⇒ (D + wL)xk+1 = ((1− w)D − wU)xk + wb

The i’th element in x can then be defined as

xk+1
i =

wbi +Diix
k
i − wDiix

k
i − w

∑n
j=i+1 Uijx

k
j − w

∑i−1
j=1 Lijx

k

Dii

Simplified knowing the residual to be r = b−Axk:

xk+1
i = xki + w

ri
Dii

Where 0 < w < 2. When w = 1 it is just the Gauss-Seidel method.

4 Interpolation

4.1 Theorem of polynomial interpolations
If we have n distinct coordinate pairs, then we can find a polynomial of degree
n − 1 that will pass all points. There exists only one unique polynomial that
satisfy this for every case.
But there exists infinitely many polynomials of degree n ≤ that also satisfy this,
but we always prefer a polynomial with fewest degrees.

4.2 Secret sharing
If 2 people are both given a coordinate and a secret value is hidden at e.g.
f(0) = secret, where the secret is located such that if the two people make
a straight line between their points, it will pass the secret point. They can
therefore only know the secret point if they combine their points. This can
easily be extended to higher degree polynomials, such that more people need to
know a point or such that more people are needed to reveal the secret.

4.3 Lagrange interpolation
The lagrangian interpolation is defined on the form

f(x) = c1δ1(x) + c2δ2(x) + c3δ3(x) + · · ·+ cnδn(x)

One delta function for every point the polynomial passes trough, and c1 is the
coefficent such that c1 = y1. For example δ1 that to equal δ1(x1) = 1 and
δ1(x2) = 0 such that whenever an x value corresponds to a point in the data

19

set, only one delta function gives the correct y value with the coefficient, and
all other delta functions are 0. An example using 3 points:

It can formally be defind as

p(x) =
∑

ciδi(x) =
∑
i

f(xi) ·Πj
x− xj
xi − xj

=

An example using 4 points:

4.4 Newton divided difference method
The newton divided difference method uses the idea that when given n points
to interpolate, that can result in a system of equations with n equations and n
unknowns. To solve this system the method uses a diveded difference method,
formally as

fn(x) = c0 + c(x− x0) + c2(x− x0)(x− x1) + . . . cn(x− x0)(x− x1) . . . (x− xn)

c0 = f [x0] = f(x0) = y0

c1 = f [x1, x0] =
f [x1]− f [x0]

x1 − x0
=
f(x1)− f(x0)

x1 − x0
=
y1 − y0

x1 − x0

c2 = f [x2, x1, x0] =
f [x1, x1]− f [x1, x0]

x2 − x0

20

c3 = f [x3, x2, x1, x0] =
f [x3, x2, x1]− f [x2, x1, x0]

x3 − x0

And so on.
When doing the method, it is best to do it in a table, like the following example:

To find the correct denominator, it can easily be found by first going down and
left as far possible from the current position and then minus that by the x value
going back an up as far as possible. As an example in the example above in the
first 2nd order difference to get the denominator 2−0: Go to left-down-left-down
and then 2 i reached. Go up-left-up-left and then 0 is reached.

When the table is done, the polynomial can be made from the first definition
by using the top row as ci. Using the example above
c0 = 0, c1 = 1, c2 = 3, c3 = 1 and c4 = 0

p(x) = 0+1(x−0)+3(x−0)(x−1)+1(x−0)(x−1)(x−2)+0(x−0)(x−1)(x−2)(x−3)

4.5 Spline interpolation
Instead of making one polynomial to interpolate all points, we just make a
straight line between all points to make a linear spline interpolation. The line
between every two points (xi → xi+1) are defined as

f(x) = yi +
yi+1 − yi
xi+1 − xi

(x− xi)

This makes in non-differentiable.
Instead we can make quadratic spline interpolation using second degree polyno-
mials. In order for it to be differentiable we want the connection between two
lines (at every point) to have the same slope. E.g. the splines xi−1 → xi → xi+1

then the 2 splines meeting at xi should have the same slope at (xi, yi)

21

To calculate the two splines, we need to do it simultanous to have the same
slope. We can define the two splines as

y−1 = a−1,0 + a−1,1x+ a−1,2x
2

y1 = a1,0 + a1,1x+ a1,2x
2

Then we need the following to be true

d

dx
(a−1,0 + a−1,1x+ a−1,2x

2) =
d

dx
(a1,0 + a1,1x+ a1,2x

2)

And we know it has to be true at xi therefore x = xi

⇐⇒

a−1,1 + 2a−1,2xi = a1,1 + 2a1,2xi

To be able to have a system with as many unknowns as equations, we have to
set one of the parameters to begin with (usually a2,0 such that the first spline
is linear.)

4.5.1 Example of quadratic spline interpolation

Example with the points (5, 6), (6, 5), (9, 5):
First we choose to make a0,2 = 0 to get the correct number of unknowns (can
be any number, but for simplicity we choose 0).

The splines meet at (6, 5) so we can make two the two equations from point
one (5, 6) and two (6, 5)

6 = a0,0 + a0,1 · 5

22

5 = a0,0 + a0,1 · 6

Because first spline must pass through those two points. As must the second
spline pass through point two (6, 5) and three (9, 5) therefore

5 = a1,0 + a1,1 · 6 + a1,2 · 62

5 = a1,0 + a1,1 · 9 + a1,2 · 92

And to make the slopes equal

d

dx
(a0,0 + a0,1 · xi) = a0,1

d

dx
(a1,0 + a1,1 · x+ a1,2 · x2) = a11 + 2a1,2 · xi

We know they meet at x = 6 therefore x = xi = 6 and we set them equal

a0,1 = a11 + 2a1,2 · 6

Now we have the following equation 5

6 = a0,0 + a0,1 · 5

5 = a0,0 + a0,1 · 6

5 = a1,0 + a1,1 · 6 + a1,2 · 62

5 = a1,0 + a1,1 · 9 + a1,2 · 92

a0,1 = a11 + 2a1,2 · 6

And with 5 unknowns. We solve them and get the two splines to

y0 = 11− x

y1 = 13− 5x+
1

3
x2

Visually we see it to match it:

23

5 Numerical Linear Algebra

5.1 Power method
Used to find the largest absolute unique eigenvalue and its eigenvector (Av =
λv), A is quadratic and has an unique largest eigenvalue. Usually we make the
characteristic polynomial (det(A− λI)) and solve for det(A− λI) = 0, but that
is difficult for large matrices.
If given a matrix A and a startvector (can be any), then an algorithm can be
made as.

Where r is the approximation of the eigenvalue, x is the normalized eigenvector
and ϕ is a linear function (e.g. ϕ(x) = 2x+ 1). The algorithm can also include
a absolute stop criteria such as |rk+1 − rk| < εr or |xk+1 − xk| < εx or relative
stop criteria such as |rk+1 − rk| < δr|rk| or |xk+1 − xk| < δx||xk||

5.1.1 Inverse power method

Can be used to find the smallest eigenvalue and corresponding eigenvector.

But calculating the inverse of A can be very expensive we therefore change it to

24

5.2 Gershgorins theorem
Discs that contain all the eigenvalues of a quadratic matrix (but complex and
real) in the complex plan. Defined as

Di = {2 ∈ C||2− aii| ≤
n∑

j=1,j 6=1

|aij |}

Where the discs radius is
∑n
j=1,j 6=1 |aij | (the absolute sum of the row, not in-

cluding the diagonal) and the center is at the diagonal point.
Example:

This matrix has 3 discs, where D1 has its center at (1, i) and a radius of 2, D2

has its center at (0, 0) with a radius of 3 and D3 has its center at (1
2 , 0) with a

radius of 3.

5.2.1 Using the inverse

A matrix A and its inverse AT have the same eigenvalues. Using that we can
make discs for the inverse as well, and then just choose the smallest disc at every
point to minimize the area the eigenvalues can be located at.

5.3 Gram-Schmidt process
The process takes a set of linear independent vectors (matrix A) and makes
an orthonormal set (matrix B). The process takes for all vectors and subtracts
them by how much they go in the same direction as the other vectors to make
them orthogonal and them normalize them to make them orthonormal. In an
orthonormal set of vectors all the length are 1 and the dot product between all
vectors are 0.

B′k = Ak −
∑
i<k

< Ak, Bi > Bi

25

Bk =
B′k
||B′k||

By using the Gram-Schmidt process we can factorize A by saving the B vectors
and by what we correct them by to get a factorization A = BT , e.g. with 3
vectors

[A1|A2|A3] = [B1|B2|B3]

||B′1|| < A2, B1 > < A3, B1 >
0 ||B′2|| < A1, B2 >
0 0 ||B′3||


5.4 Least square solutions
If we have more equations than unknowns, then we can approximate a solution
by using least squares method. x∗ is the approximate solution to the equation
Ax = b where

AT (Ax∗ − b) = 0

This equation can be solved using a orthonormal factorization of A (A = BT ,
using e.g. Gram-schmidt):

Tx = (BTB)−1BT b

5.5 QR factorization - Householder
If we have a matrix A with M rows and N columns (MxN) andM ≥ N (more or
equally as many rows as columns), then A can be factorized as A = QR where
Q is a MxM orthonormal matrix and R is a MxN upper triangular matrix.
Householders calculates QTA = R recursively by calculating

(QTN . . . Q
T
2 Q

T
1)A = QTA = R

With every iteration we first calculate the length (norm 2) of the k’th vector
in A Bk = ||ak||2. Then we calculate yk = ak − Bke1 where e1 is the elemen-
tary vector with as many elements as ak (e.g. [1, 0, 0]T with 3 elements). Then
normalize it ŷk yk

||yk||2 , and then QTk is given by

I − 2ŷŷT

By every iteration the dimension of QT matrix is reduced by one row and one
column, with the identity matrix to fill it out, so they all have the same dimen-
sion. Generic example with the first 2 iterations, and then the k’th iteration:

26

5.6 Singular value decomposition (SVD - A=PDQ form)
Given a general matrix A (MxN), with no specific restrictions. A can be fa-
ctorized such that A = PDQ, then P is a MxM matrix, D is a diagonal MxN
matrix with singular values and Q is a NxN matrix.
D contains as many singular value as r = rank(A), given by the relation

ATAui = σ2
i ui

Which means the singular value is the square root of the eigenvalue for ATA.
The singular values are sorted, such that σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σn ≥ 0. The
first r singular value are positive (σr > 0).

The Q matrix contains eigenvectors ui (as rows) that corresponds to the
singular values in D. The r + 1 to N eigenvectors are the orthonormal basis for
the nullspace of A.

The P matrix has the first r vectors given by the relation

vi =
1

σi
Aui

The last r + 1 to N vectors are selected such that P is an orthonormal basis
for the space RN . The first r vectors are already an orthonormal set, so we just
have to add vectors that match into the set.

5.6.1 Approach for SVD

First calculate the singualar values and eigenvectors

ATAui = σ2
i ui

Where σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σn ≥ 0, which we can use to contruct the D matrix

D =

σ1 0 0

0
. . . 0

0 0 σr


Then we make the Q matrix by setting the eigenvectors found to the singular

values as rows

Q =

u1

...
un


Then we can calculate the vectors vi for the P matrix using

vi =
1

σi
Aui

27

for all 1 ≤ i ≤ r = rank(A) (same number of positive singular values).

P =
[
v1 . . . vr | vr+1 . . . vM

]
Then we have to select the last vr+1 to vM vectors such that the matrix is a
orthonormal basis.

5.6.2 VSU form

When constructing the full A = PDQ we notice that the D matrix only contains
values at the first rxr rows/columns, we therefore dont need the r + 1→ r + n
columns in P (the vectors we had to find ourself) and the r + 1 → r +N rows
in Q we don’t need (the eigenvectors corresponding to the non-positive singular
values). The form is called the VSU form

A = V SU

5.7 Minimal solutions
We can either have a consistent system of equations or an inconsistent system
when solving Ax = b. We can then define what we view as the solution in all
given cases.

5.7.1 Consistent

If we have as many unknowns as equations then we have a unique solution.
If we have too many unknowns compared to equations (more columns than
rows), then we have a set of solutions, and we choose the one with the minimum
euclidean norm.

5.7.2 Inconsistent

A system with too many equations compared to unknowns (Too many rows
compared to columns) and one unique least squares solution.
Or we can have a set of least squares solutions, then we choose the solution with
the minimum euclidean norm.

28

5.7.3 Pseudoinverse

A pseudoinverse A+ will always give an unique minimal solution. Using the
SVD, but with the inverse singular values in D instead, such that

D+ =

σ
−1
1 0 0

0
. . . 0

0 0 σ−1
r


Then A+ = QTD+PT and the minimal solution will be given with x = A+b

6 Numerical Differentiation

6.1 Connection between analytical and numerical diffe-
rentiation

Analytically the differentiation is given by
df

dx
= lim∆x→0

f(x+ ∆x)− f(x)

∆x

Numerically we can define is as
df

dx
≈ f(x+ h)− f(x)

h

Where the approximation is better the smaller h is. Using this technique the
error follows a linear function (O(n)). So e.g. every time h gets 10 times smaller
(0.1→ 0.01) the error also gets 10 times smaller.

6.1.1 Deriving using Taylor series

We can define f(x+h) using a Taylor series, and then prove the error term and
defintion from before

f(x+ h) = f(x) +
h1

1!
f ′(x) +

h2

2!
f ′′(x) + · · ·+ hn

n!
f (n)(x)

Where the Taylor series is exact for n → ∞. We are interested in f ′(x), so we
isolate that to get

h · f ′(x) = f(x+ h)− f(x)− h2

2
f ′′(x)− · · · − hn

n!
f (n)(x)

⇐⇒

f ′(x) =
f(x+ h)− f(x)

h
− h

2
f ′′(x)− · · · − hn−1

n!
f (n)(x)

From there we see that the error term is −h2 f
′′(x) − · · · − hn−1

n! f (n)(x), which
follows a linear trend, since it can be rewritten as

ε = −h
2
f ′′(x)−· · ·−h

n−1

n!
f (n)(x) =

h

2
(f ′′(x)−h

3
f ′′′(x)−h

2

12
f ′′′′(x)−· · ·−h

n−1

n!
f (n)(x))

Where the leading term is h
2 which is linear.

29

6.2 Deriving O(n2) using f(x+ h
2
)

Using the same technique, but using f(x+ h
2) instead of f(x+ h) we can have

the error follow O(n2)

df

dx
≈
f(x+ h

2)− f(x)

h
=
f(x+ h)− f(x− h)

2h

6.2.1 Deriving using Taylor series

We know from before that

f(x+ h) = f(x) +
h1

1!
f ′(x) +

h2

2!
f ′′(x) + · · ·+ hn

n!
f (n)(x)

And now we also have f(x− h) which is

f(x− h) = f(x)− h1

1!
f ′(x) +

h2

2!
f ′′(x)− · · ·+ hn

n!
f (n)(x)

All the odd terms are negative, since (−h)n gives a positive number when n is
even.
If we now subtract them from each other

f(x+ h)− f(x− h) = 2hf ′(x) + 2
h3

3!
f ′′′(x) + · · ·+ 2

hn

n!
f (n)(x)

Since all the even terms cancelled out, we are left with all the odd terms. Now
isolate f ′(x)

f ′(x) =
f(x+ h)− f(x− h)

2h
− h2

6
f ′′′(x) + · · ·+ hn−1

2n!
f (n)(x)

We now see that the leading term in the error is h2

6 and therefore the error is
O(n2)

ε = −h2(
1

6
f ′′′(x) + · · ·+ hn−3

2n!
f (n)(x))

6.3 Richardson Extrapolation
We know from before that f ′(x) can be given as

f ′(x) =
f(x+ h)− f(x− h)

2h
−h2(a ·f ′′′(x)+b ·h2 ·f (5)(x)+c ·h4 ·f (6)(x)+ . . .)

Redefining the error as −t · h2 such that

f ′(x) =
f(x+ h)− f(x− h)

2h
+ t · h2 (1)

We want to minimize the error term, so we make a new equation with h
2

f ′(x) =
f(x+ h

2)− f(x− h
2)

h
+ t · h

2

4
(2)

30

Now we subtract (1) with 4 times equation (2) such that (1)− 4(2):

−3f ′(x) =
f(x+ h)− f(x− h)

2h
− 4

f(x+ h
2)− f(x− h

2)

h
+ 0

We see that the error term cancels out since th2 − 4th
2

4 = 0.
Again isolating f ′(x)

f ′(x) =
4

3

f(x+ h
2)− f(x− h

2)

h
− f(x+ h)− f(x− h)

6h

This now approximates the derivative very precisely.

6.4 Differentiation using interpolation
Using interpolation, like Lagrangian interpolation around the around the point
we want the derivative of, we can then just differentiate the polynomial we get
from the interpolation

7 Numerical Integration

7.1 Average based method
One simple way to approximate the integral is just to calculate the average
"height"(y-value) of the interval times the length of the interval (b− a)∫ b

a

f(x)dx ≈ 1

n
(

n∑
i=0

f(xi))(b− a)

7.1.1 Dividing segments using trapozoid rule

Instead of calculating just one average height, we can split the integral up, so
we calculate the average height between each point pair.

The trapoziod rule is given by∫ b

a

f(x)dx ≈ (b− a)
f(a)− f(b)

2

31

Which takes the average height and multiplies by the length between a and b.
If we want the integral between a and b, where a nd b is not directly at a given
xi point. We calculate the straight line between the points that e.g. a is between

y0 = a0 + a1 · x0

y1 = a0 +a 1 · x1

And then solve for a0 and a1, so we can calculate the yi at a (lets call it ya and
at xa) ya = a0 + a1 · xa

7.2 Integrating using interpolation
As with differentiation, we can just interpolate (e.g. using Lagrangian interpo-
lation) and then integrate that polynomial. Notice that interpolating gets very
un-precise outside the interval of given data points

7.3 Method of undetermined coefficients
We know from the trapezoidal rule, that the integral between 2 points can be
approximated by taking the integral of a straight line between them. Now we
define it to be equal to some linear combination of f(a) and f(b) as∫ b

a

f(x)dx ≈ (b− a)
f(a) + f(b)

2
= A0 · f(a) +A1 · f(b)

And the straight line between a and b can be defined at c0 + c1x. And the
integral of that line is∫ b

a

c0+c1xdx =

[
c0x+

c1x
2

2

]b
a

= (c0b+
c1b

2

2
)−(c0a+

c1a
2

2
) = c0(b−a)+c1(

b2 − a2

2
)

We can now define f(a) and f(b) using the straight line just defined

A0 · f(a) +A1 · f(b) = A0(c0 + c1 · a) +A1(c0 + c1 · b)

We rearrange to have it in terms of c0 and c1

A0(c0 + c1 · a) +A1(c0 + c1 · b) = c0(A0 +A1) + c1(A0 · a+A1 · b)

We can now compare that to the true integral we calculated for the straight
line, which was c0(b−a)+c1(b

2−a2
2), and we can therefore make the 2 equations

b− a = A0 +A1

b2 − a2

2
= A0 · a+A1 · b

We solve for A0 and A1 and get

A0 = A1 =
b− a

2

32

Which are the same coefficients as the trapezoid rule.
The same logic can be used to approximate using a higher degree polynomial
with more points instead of a straight line with 2 points. We just get more An
coefficients and a larger true integral to compare.

7.4 Simpsons rule
Using 3 points a, a+b

2 and b, and now we define a polynomial of 2nd degree to
go through a and b:

fab(x) = a0 + a1x+ a2x
2

And the integral of that function to be∫ b

a

f(x)dx =

[
a0x+

a1x
2

2
+
a2x

3

3

]b
a

= a0(b− a) +
a1

2
(b2 − a2) +

a2

3
(b3 − a3)

And we now define f(a), f(a+b
2) and f(b) in terms of that polynomial to make

3 equations
f(a) = a0 + a1 · a+ a2 · a2

f(
a+ b

2
) = a0 + a1(

a+ b

2
) + a2(

a+ b

2
)2

f(b) = a0 + a1 · b+ a2 · b2

We now have 4 equations (with the true integral) and 4 unknowns (with the
value of the integral). We solve the equations, and the integral is then equal to∫ b

a

f(x)dx =
b− a

6
(f(a) + 4f(

a+ b

2
) + f(b))

⇐⇒
∫ b

a

f(x)dx =
h

3
(f(a) + 4f(a+ h) + f(a+ 2h))

Where h is the distance from a→ a+b
2 , and there a+ 2h = b

7.5 Gaussian Quadrature
In the Gaussian quadrature we are no longer restricted to what a and b are, an
we therefore define the integral to be∫ x̄

x̂

f(x)dx = A0f(x̂) +A1f(x̄)

Where we have 4 unknowns. We can then rewrite to simplify∫ 1

−1

f(t)dt = ω0f(t1) + ω1f(t2)

33

Where the 4 unkowns are ω0, ω1, t1 and t2. We then make 4 equations, where
f(t) = 1, t, t2, t3 as a "training set"

f(t) = 1→
∫ 1

−1

f(t)dt = 2 = ω0 · 1 + ω1 · 1

f(t) = t→
∫ 1

−1

f(t)dt = 0 = ω0 · t1 + ω1 · t2

f(t) = t2 →
∫ 1

−1

f(t)dt =
2

3
= ω0 · t21 + ω1 · t22

f(t) = t3 →
∫ 1

−1

f(t)dt = 0 = ω0 · t31 + ω1 · t32

Solving the equations we get ω0 = 1, ω1 = 1, t1 = ±
√

1
3 and t2 = −t1.

Going back to the original interval a to b, we can do the following

x =
(b− a)t+ b+ a

2

Since ten when t = −1 → x = a and when t = 1 → x = b. And we set
dx = (b−a)

2 dt we combine them to make the final Gaussian Quadrature equation∫ b

a

f(x)fx =

∫ 1

−1

f(
(b− a)t+ b+ a

2
)(
b− a

2
)dt

We can easily extend the Gaussian Quadrature to N components using the
same logic, we just need 2N equations made from a "training set"as we did
above using polynomials from 1 to 2N degree.

8 Monte-Carlo Simulation

8.1
using a randomized data generating process (DGP) we can simulate many cases
of a problem to estimate what is most likely to happen

8.2 Numerical integration
If we plot a figure in a space where we know the size of the space, we can then
"drop balls"at random places within the space. The integral of the figure must
then be I = sizespace · Balls within the figure

Total dropped balls . The more points we drop, the more
accurate does the integral get.

34

The general process can be defined as

Such that the integral is approximated to IN with an error term of ± σf√
N
.

35

