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1 Topic 1. floating points - floating point repre-
sentation, truncation and rounding errors

First do the general formula then the one that includes floating points.

±(dN . . . d0)b = s(

N∑
i=0

di · bi)10

±(dn . . . d0, d−1, d−2 . . . d−m)b = s

n∑
i=−m

di · bi

Talk about truncating error

|(x)b − (x̂)b| < b−n

And then rounding error, which is twice as ”good”

|(x)− (x̃)| ≤ 1

2
b−n

Normalized scientific notation, and then use that to explain

(x)b = q · bm

where q must be a zero followed by a comma and then a number that is not
zero.

machine numbers with 32 bits.
The machine number can be written as 1 sign bit, 8 exponent bits and 23
mantissa bits (fraction bits). The exponent bias is 127 (e = 127 +m).
When converting, we can improve precision by 2, if we use a modified scientific
notation like 1.01 · 23, because then we just remember the first 1 and just save
the fraction.

Absolute error in machine number using rounding is

|x− x̃| ≤ 1

2
2m−q

1



2 Topic 2: solving nonlinear equations - bisec-
tion/dichotomy method, Newton method, Horner
algorithm

Introduction: Root finding and evaluation of polynomials. Naive vs. nested
multiplication.

Bisection method to find the root of a function. Draw example and then
talk about error Size of interval after n iterations

(bn − an) = (
1

2
)n(b0 − a0)

(
1

2
)1+n(b0 − a0) ≤ δ

And it only converges when given an interval that has a root. It can stop at
either at a relative/absolute stopping criteria or at a max iterations. Linear
convergence rate.

Newtons method to find the root of a function. Draw example. It uses the
derivative to find the next x to evaluate. This can be written as the newton
update

xn+1 = xn − f(x)

f ′(x)

We can again stop at either at a relative/absolute stopping criteria or at some
max iterations.
Newtons does not always converge, it can oscillate in some cases (draw exam-
ple), and f ′(x) ̸= 0. Converges quadratic

Secant method is like newton but where we either cant differentiate or it is
too consuming.

Illustrate naive evalutation. General example to illustrate nested multipli-
cation to evaluate polynomials. This evaluates a polynmial using only n multi-
plications and n additions, compared to n2 multiplications using naive.

This is the principle behind Horners method to evaluate polynomials. This
can easily be writtin in table-form. Using the new coefficients we can calculate
the derivatives. Going back to Newtons method, we see that we can evaluate
the newton iteration just using horners method for both f(x) and for f ′(x).
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3 Topic 3: Solving linear systems - Matrix norms,
LU decomposition, a bit of Jacobi/Gauss-Seidel
solvers

Introduction: We want to solve a system of equations

Ax = b

First we talk about the vector norm. Draw norms when ||x|| = 1.
Then we look at matrix norms. Here we define what norm 1, 2 and infinity

are.

||A||1 = max1≤j≤n

n∑
i=1

|aij |

||A||2 = max1≤i≤n|σi|
Where σ is a singular value of A. or as

||A||2 =
√

ρ(ATA)

Where ρ is a function that gives the spectral radius. Where

ρ(ATA) = max1≤i≤nλi

Where λ is an eigenvalue of ATA. It just finds the largest eigenvalue of ATA.
In short: The 2 matrix norm is the square root of largest eigenvalue of ATA

||A||∞ = max1≤i≤n

n∑
j=1

|aij |

Then I will look at different LU decompositions. These are best with dense
matrix and give exact value.
First we know that an LU decomposition can be made of a square symmetric
matrix using Cholesky

A = LLT

then we look at Crout (and Doolittle), where we create a lower triangular
and an upper. In Crout the diagonal of the upper is 1 and in Doolittle the
diagonal of the lower is one. To make the factorization we just make a system
of equations using matrix multiplication.

Using LU to solve Ax = b, we first define LUx = b. Then we make Ux = z
and then we solve Lz = b using forward substitution to then solve Ux = z using
backwards substitution.

Finnaly I will talk about splitting matrixes how to use them and the examples
of Jacobi and gaus seidel.
Splitting matrices: We redefine the equation, such that we introduce a Q matrix:

Ax = b ⇐⇒ Qx = (Q−A)x+ b
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Analytically we can define a splitting matrix iteration as

xn+1 = (I −Q−1A)xn +Q−1b

Different methods set Q as different matrices.
In the Jacobi method we set Q = D and get

Dx = (D −A)x+ b = (−L− U)x+ b

And therefore the iteration

xk+1 = (I −D−1A)xn +D−1b

Using the Gauss-seidel we set Q = D + L.

Talk about conditioning number if needed

4 Topic 4: Interpolation - theorem of polyno-
mial interpolation (core ideas), Largange in-
terpolation form, Spline interpolation

If we have n distinct coordinate pairs, then we can find a polynomial of degree
n − 1 that will pass all points. There exists only one unique polynomial that
satisfy this for every case. This is what enables secret sharing.

The lagrangian interpolation is defined on the form

f(x) = c1δ1(x) + c2δ2(x) + c3δ3(x) + . . .+ cnδn(x)

Which formally an be written as

p(x) =
∑

ciδi(x) =
∑
i

f(xi) ·Πj
x− xj

xi − xj
=

Where the delta functions are ”binary indicator functions”, that indicate what
the y value at an x is supposed to be, when x is at a data point.

Spline interpolation. Instead of a straight line or just one polynomial, we
can make a new polynomia between every to points. We call them splines.
One way it to make 1 degree, those a straight lines. But a better approximation
is second degree polynomials. To calculate the two splines, we need to do it
simultanous to have the same slope. We can define the two splines as

y−1 = a−1,0 + a−1,1x+ a−1,2x
2

y1 = a1,0 + a1,1x+ a1,2x
2

Then we need the following to be true

d

dx
(a−1,0 + a−1,1x+ a−1,2x

2) =
d

dx
(a1,0 + a1,1x+ a1,2x

2)
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And we know it has to be true at xi therefore x = xi

⇐⇒

a−1,1 + 2a−1,2xi = a1,1 + 2a1,2xi

To be able to have a system with as many unknowns as equations, we have to
set one of the parameters to begin with (usually a2,0 such that the first spline
is linear.)

5 Topic 5: Eigenvalues, Orthogonal factoriza-
tion and LS problems - Power Method, Gram
Schmidt factorisation, QR factorisation

Power method: Used to find the largest eigenvalue. We have a matrix A and a
random start vector x. We then multiply Ax, save it in y. Then we calculate
the ration (which is the eigenvalue) by using a linear transformation (ϕ) of y
and x, and then dividing y by x to get the ration of how much it changes. Then
we normalize y and save it in x. Reapeat. Mention inverse to get the smallest
eigenvalue.
Mention Gershgorins discs?

Gram-Schmidt: We want to create an ortonormal basis by removing the
”direction” of each vector from one another and then normalize them.

QR using householder.
If we have a matrix A with M rows and N columns (MxN) and M ≥ N (more or
equally as many rows as columns), then A can be factorized as A = QR where
Q is a MxM orthonormal matrix and R is a MxN upper triangular matrix.
Householders calculates QTA = R recursively by calculating

(QT
N . . . QT

2 Q
T
1 )A = QTA = R

With every iteration we first calculate the length (norm 2) of the k’th vector
in A Bk = ||ak||2. Then we calculate yk = ak−Bke1 where e1 is the elementary
vector with as many elements as ak (e.g. [1, 0, 0]T with 3 elements). Then
normalize it ŷk

yk

||yk||2 , and then QT
k is given by

I − 2ŷŷT

By every iteration the dimension of QT matrix is reduced by one row and one
column, with the identity matrix to fill it out, so they all have the same dimen-
sion. Generic example with the first 2 iterations, and then the k’th iteration:
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6 Topic 6: Numerical differentiation - Numeri-
cal differentiation error and Taylor series, Richard-
son Extrapolation

6.1 Introduction

1Introduction to different ways to differentiate:
We know the analytic defintion of the derivative

df

dx
= lim∆x→0

f(x+∆x)− f(x)

∆x

We can then make a simple method to calculate the derivative using a ”small
h”:

df

dx
≈ f(x+ h)− f(x)

h

This is not a good approximation since the error scales linearly. This can be
proven by using a taylor series.
A better approximation is using

df

dx
≈=

f(x+ h)− f(x− h)

2h

This can be proven by Taylor series

f(x+ h) = f(x) +
h1

1!
f ′(x) +

h2

2!
f ′′(x) + . . .+

hn

n!
f (n)(x)

(Quick note about the error term of this to the earlier method).
And now we also have f(x− h) which is

f(x− h) = f(x)− h1

1!
f ′(x) +

h2

2!
f ′′(x)− . . .+

hn

n!
f (n)(x)

All the odd terms are negative, since (−h)n gives a positive number when n is
even.
If we now subtract them from each other

f(x+ h)− f(x− h) = 2hf ′(x) + 2
h3

3!
f ′′′(x) + . . .+ 2

hn

n!
f (n)(x)

Since all the even terms cancelled out, we are left with all the odd terms. Now
isolate f ′(x)

f ′(x) =
f(x+ h)− f(x− h)

2h
− h2

6
f ′′′(x) + . . .+

hn−1

2n!
f (n)(x)

And we now see that the error term is O(n2) and therefore scales quadraticly
and is a better approximation.
To get an even better approximation we can get rid of the error term using
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Richardsons extrapolation:
Redefining the error as −t · h2 such that

f ′(x) =
f(x+ h)− f(x− h)

2h
+ t · h2 (1)

We want to minimize the error term, so we make a new equation with h
2

f ′(x) =
f(x+ h

2 )− f(x− h
2 )

h
+ t · h

2

4
(2)

Now we subtract (1) with 4 times equation (2) such that (1)− 4(2):

−3f ′(x) =
f(x+ h)− f(x− h)

2h
− 4

f(x+ h
2 )− f(x− h

2 )

h
+ 0

We see that the error term cancels out since th2 − 4th
2

4 = 0.
Again isolating f ′(x)

f ′(x) =
4

3

f(x+ h
2 )− f(x− h

2 )

h
− f(x+ h)− f(x− h)

6h

This now approximates the derivative very precisely, and now only comes down
to machine precision.
Quick note about diriving using interpolation: E.g. lagrange interpolation.

7 Topic 7: Numerical integration - Method of
undetermined coefficients, Gaussian Quadra-
ture, Simpson’s rule

Introduction to numerical integration: Average method and trapozoid rule.
A better approximation is the undetermined coefficients method.

Now we define it to be equal to some linear combination of f(a) and f(b) as∫ b

a

f(x)dx ≈ (b− a)
f(a) + f(b)

2
= A0 · f(a) +A1 · f(b)

And the straight line between a and b can be defined at c0 + c1x. And the
integral of that line is∫ b

a

c0+c1xdx =

[
c0x+

c1x
2

2

]b
a

= (c0b+
c1b

2

2
)−(c0a+

c1a
2

2
) = c0(b−a)+c1(

b2 − a2

2
)

We can now define f(a) and f(b) using the straight line just defined

A0 · f(a) +A1 · f(b) = A0(c0 + c1 · a) +A1(c0 + c1 · b)
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We rearrange to have it in terms of c0 and c1

A0(c0 + c1 · a) +A1(c0 + c1 · b) = c0(A0 +A1) + c1(A0 · a+A1 · b)

We can now compare that to the true integral we calculated for the straight

line, which was c0(b−a)+c1(
b2−a2

2 ), and we can therefore make the 2 equations

b− a = A0 +A1

b2 − a2

2
= A0 · a+A1 · b

We solve for A0 and A1 and get

A0 = A1 =
b− a

2

Which are the same coefficients as the trapezoid rule.

Simpsons rule:
Using 3 points a, a+b

2 and b, and now we define a polynomial of 2nd degree to
go through a and b:

fab(x) = a0 + a1x+ a2x
2

And the integral of that function to be∫ b

a

f(x)dx =

[
a0x+

a1x
2

2
+

a2x
3

3

]b
a

= a0(b− a) +
a1
2
(b2 − a2) +

a2
3
(b3 − a3)

And we now define f(a), f(a+b
2 ) and f(b) in terms of that polynomial to make

3 equatoins
f(a) = a0 + a1 · a+ a2 · a2

f(
a+ b

2
) = a0 + a1(

a+ b

2
) + a2(

a+ b

2
)2

f(b) = a0 + a1 · b+ a2 · b2

We now have 4 equations (with the true integral) and 4 unknowns (with the
value of the integral). We solve the equations, and the integral is then equal to∫ b

a

f(x)dx =
b− a

6
(f(a) + 4f(

a+ b

2
) + f(b))

⇐⇒
∫ b

a

f(x)dx =
h

3
(f(a) + 4f(a+ h) + f(a+ 2h))

8 Topic 8: Monte-Carlo simulation - MC inte-
gration, an example of using MC (not the ex-
amples that were presented in the lectures)
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