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1 E/R Diagram (Conceptual modeling)

An E/R diagram (entity /relationship) visually represents relationships between entities. It also models at-
tributes and more complex relationships. However, not everything can be expressed in an E/R diagram and
must be written/expressed in another way. E/R is subjective, as there are often many ways to correctly model
a scenario. We however always try to reduce redundancy.

1.1 Entity

Represented as a rectangle. An entity is often a noun, which means it’s often an object, set of objects, or
similar. E.g. employees, fruits, etc. One entity has to have at least one key and can have attributes to describe
the entity.

1.2 Attribute

Represented as a circle. An attribute is something that describes an entity or relation. It always has a domain,
e.g. an Int or a string. An attribute can only have one value, if more is needed we need to create a separate
entity to handle those.

1.3 Key (simple)

Represented as an underline of the attribute. Is a unique attribute, like ID or CPR-number. Can also combine
two or multiple attributes to form a unique key pair(s).



1.4 Relationships

Represented as a rhombus (rectangle stretched and tilted). Association/relationship between two or more
entities. E.g. entityl hates entity2, then the relationship is "hates". A relationship can also have attributes.

1.5 Arrows

Arrows can be used to define uniqueness constraints. There must never be an arrow/line directly between
two entities (must be a relationship between).

1.5.1 Many-Many

Regular line, no arrow tip (A-B). Indicate that A can have many B and B can have many A. E.g. one student
can have many teachers, and one teacher can have many teachers.

1.5.2 Many-one

Filled arrowhead points toward the entity that has many, coming from the entity that has one. E.g. A<-B,
then A can have many B, but B can only have at most one A.

1.5.3 Referential integrity

Pointy arrowhead (A<-B). Entity A has exactly one B, and therefore must have a B. Sometimes when making
an Many-one like this, it can be usefull when making the tables in e.g. SQL to just incorporate the relationship
in the table of the entity that has "one", since it can only have one relationship with an entity anyways.

Ateribute
ST

Employees @ anages Departments
/ )
Eaety [2¢fcreatial ) , [Nany — one
ateqrity RetationSh'p J

Figur 1: Example of E/R diagram. A department has exactly one manager, but an employee may manage at
most one department (or none).

1.6 Weak entities

Seen by bold or double lined around entity. A weak entity is like a "child"of another entity, an can only exist
when it has a parent. It therefore must exist in a one-to-many relationship: One entity can have many weak
entities, but one weak entity has only one "owner"entity. Since it only has one owner, the weak entity can be
identified uniquely by its owner (e.g. by the owner’s key). It is often used with a relationship, which is then
also denoted by bold or double-lined. Whenever the owner entity is deleted the deletion has to cascade and
also delete the child entities (the weak entities)

1.7 ISA ("Is a"hierarchy)

Denoted by a triangle. Like a class in object-oriented programming. ISA denoted the inheritance. E.g. A is
a class, and B inherits from A (visually the hierarchy is denoted by height, the superclass has to be above).



Then B has all the same attributes as A, and can then also add their own. Smart when e.g. dealing with
users, since a program/site may have many different users such as admins, employees, customers, etc. but
they all need at least some base attributes.

2 Relational data model

A relational database is made of a schema and instances and is "just"a set of relations (denoted as tuples). The
schema specifies the relations and columns of that relation (and type of the column). E.g. Student(sid:string,
name:string, login:string, age:integer). The instance is the table that contains the data with rows and columns
after the specified schema. The numbers of rows is called the cardinality. The number of columns/fields is
called the degree/arity. In the relational data model all rows are distinct.

sid |name login age | gpa
53666 |Jones |jones@cs 18 | 34
53688 |Smith |smith@eecs | 18 | 3.2
53650 [Smith [smith@math | 19 | 3.8

Figur 2: Example of instance of a student relation. Cardinality=3 and degree=>5

2.1 E/R to relational

An entity or relationship is each made of their own schema. E.g. the Employee entity from figure 1 is
Employee(ssn:string, name:string, lot:int), and an instance can be made by Employee("141203", "John", 26).
When doing relationships in relational it is also made of its own schema/table. E.g. we if A hates B, we then
create a table Hates(A, B). The table does not implicitly tell us who hates who, but since we defined it as
"left"hates "right", we have to keep track of it ourselves. The primary key of a relationship table is just the
combined key of the entities that have the relation, in our example, it would be PRIMARY KEY (A key,
B.key), these keys are refered to as foreign keys.

2.2 Integrity constraints (ICs)

A condition that must be true for any instance of the database. The domain constraint (the type of the
column must be the same, e.g. int or string), key constraint, and foreign key constraint. A legal instance of
a relation is one that satisfies all integrity constraints. The database should not allow illegal instances and
should enforce these rules .

2.2.1 Primary key constraints

A set of columns (fields), is a superkey for a relation, if not 2 tuples can have the same unique set. And if a
set of fields is a superkey, we can call it a key. A subset of a key must not also be a superkey, since we want
the smallest amount of fields for a key. If there are multiple keys, we just choose one (maybe at random, does
not matter). In the "worst case"all columns can form a super key since no two rows are identical.



2.2.2 Foreign key

A foreign key is used when e.g. a relation table has to use a key from another entity as the primary key (or
in combination with). Dangling references are not allowed, e.g. we cannot refer to a foreign key if the table
it comes from does not exist.

2.2.3 Enforcing referential integrity

As dangling reference are not allowed, we cant just delete a table that is being used as e.g. a foreign key.
We therefore first has to delete the dependent tables, and then delete the "main"table. We can also delist all
references by setting the reference to NULL.

3 Relational Calculus (RC)

Describes the result of a query, and not how to compute it. Whenever we use quantifiers we "get rid"of the
variable that we quantify over. The result of a query is the columns that are still free variables.

Predicate from
predicate set P

‘ Formulas r(p - P(t’ o t)
| tat
| = () | () BV () | o A (P< Boolean operators
| Vx. ¢ | 3Ix. @ < aquantifiers |

Terms i
‘ L t =c¢ | X Var-lable from
variable set V
Constant from Variable from
domain D variable set V

Figur 3: Relational calculus "syntax". Note that the predicate set is just a table.

v E P(tl, .., tn) < (v(tl),.., v(tn)) € DB(P)
v E tlat2 = v(tl) = v(t2)

VE-=-@® = V E 0

VEOVY < VE@OrvEyY

VEOAUY < VvEoeand v E y

vV E VX. @ — v(x—c) E @ for all c e D
v E IX. @ < v(x~cC) E @ for some c € D

Figur 4: Semantics of RC. v is a row that we compare, such that it matches with the formula. F means
satisfies. So we want evaluations/rows that satisfies the right side.



fv(P(tl, .., tn)) = fv(tl)u..ufv(tn)

fv(tl~t2) = fv(tl)ufv(t2)
fv(= o) = fv(e)

fv(e v v = fv(edufv(y)
fv(e A v = fv(edufv(y)
fv(v¥x. o) = fv(p) - {x}
fv(ax. o) = fv(ep) - {x}

Figur 5: How free variables are computed from RC. See that just 3 and V removes variables, others just
combine or do nothing.

All examples when going over all the different quantifiers and such use the examples given below in figure
6.

Employees

ssn name | lot
0983763423 John 10
9384392483 Jane 10
3743923483 Jill 20

Figur 6: Caption
3.1 Predicates
Assignment of the free variables, such that the result must contain the assignment.

v E P(tl, .., tn) < (v(tl),.., v(tn)) € DB(P)

Figur 7: Predicate

I

ssn 3743923483
{name s il } = Employees(ssn,name,20)

ssn — 0983763423
name ~ John

} ¥ Employees(ssn,name,20)

Figur 8: Predicate example using table in 6. See that the first one has lot set to 20, and therefore will only
match rows that has lot to 20.

3.2 Equality

Equality is just setting conditions for a variable to be equal to something. This does not like predicate remove
it as a free variable.



vV Etlat2 & v(tl) = v(t2)

Figur 9: Equality

{lot» 10} E lot ~ 10
{lot » 10 + ¥ lot ~ 20
{ lot » 10, 1lot’ » 20 } ¥ lot ~ lot’

Figur 10: Equality example, using 6.

3.3 Negation

Gives results that do not satisfy the formula. E.g. we can almost say "does not equal".

VFEF-Q0&=VEQD

Figur 11: Negation

{ssn ~ 0983763423
n

ame ~ John } ¥ - Employees(ssn,name,lot)
lot —» 10

{lot » 10} F - lot » 20

{lot» 20} kE - lot ~ 20

Figur 12: Negation example, using 6. See that the first example does not satisfy, since the row is in the table,

but we want everything not in the table the formula states. Second example simply gives everything where
lot is not 20.

3.4 Disjunction

The "or"operator. Combines two formulas, where just one of them has to be satisfied. Be carefull, since it
can often lead to infinite result, see section 3.9.

VEQVYSVEQOrVEY

Figur 13: Disjunction



ssh
name
lot
ssn
name
lot

~ 0983763423
~ John

~ 10

~ 0983763423
~ John

~ 20

~ 0909090909

} = Employees(ssn,name,lot) v lot

} = Employees(ssn,name,lot) v lot

20

Q

20

Q

20

2

ssn
{name ~ Dmitriy } = Employees(ssn,name,lot) v lot
lot » 20

Figur 14: Disjunction example, using 6. See that it often can lead to weird results, as in example 3, where

Dmitriy satisfies, but is not in the original table.

3.5 Conjunction

The "and"operator. Combines two formulas, where both of them has to be satisfied for the row to be included.
VEOQAUY < VEo@and Vv EF y

Figur 15: Conjunction
3.6 Implication

The implication is often said as p derives q. Can sometimes be easier to just look at the truth table, see figure
16 below.

P @ P=>Q

T

T

F

F

T

T

SR ELE L

F

T

>y :=C09) vy

(a) Implication (b) Truth table for implication

Figur 16
ssn — 0983763423
name ~ John = Employees(ssh,name,lot) — lot ~ 10
lot » 10
ssh — 0983763423
name — John = Employees(ssn,name,lot) — lot ~ 10
lot » 20

ssn
name
lot

~ 0909090909

- 20

Figur 17: Implication example, using 6.

- Dmitriy } ¥ (= Employees(ssn,name,lot)) — lot ~ 30



3.7 Existential Quantifier

In words we often say "For some x there exists ...". In RC it is just used to remove a column/free variable.
Since we just want a row, but we don’t necessarily care about all/some variables.

v E IX. ¢ < v(x—c) E ¢ for some c € D

Figur 18: Existential quantifier

ssn — 0983763423
name ~ John = Employees(ssn,name,lot)
lot » 10

ssn — 0983763423
{name = John } = Jlot. Employees(ssn,name,lot)

{ name » John } E 3ssn. 3lot. Employees(ssn,name,lot)

{ } = Iname. 3ssn. Jlot. Employees(ssn,name,lot)
{ } = Jlot. lot ~ 20

Figur 19: Existential quantifier example, using 6.

3.8 Universal Quantifier

Check whatever value we plug in is true. Read as "For all". Has to check all values in the domain. Often used
in combination with the implication.

V E WX, ¢ & v(ixec) E @ for all c e D

Figur 20: Universal quantifier

ssn ~ 0983763423
name ~ John ¥ Employees(ssn,name,lot)
lot » 20

ssn — 0983763423 ¥ Vlot. Employees(ssn,name,lot)
name ~ John

=t

{ name ~» John } ¥ Vssn. Vlot. Employees(ssn,name,lot)
{ } ¥ Vname. VYssn. Vlot. Employees(ssn,name,lot)
{} = Vliot. lot ~ 20
{} E Vlot. lot »~ lot

Figur 21: Universal quantifier examples, using 6.

3.9 Infinite results

One large problem with relational calculus is that you can often create queries that give infinite relations /re-
sults. Some examples are given below in figure 22. Why each example is infinite is given below also:

1: Gives infinite because of the V ("or"), since as long as e.g. P(10) is True, then Q(v) can be anything, and
even rows not contained in Q, and therefore infinite.

2: Gives infinite because negating a table just gives everything not in the table, thus that is of course everyt-
hing else, which is then infinite.

3: y and x can just be arbitrary numbers, hence 1=1, 2=2, 3=3 and so forth, giving infinite results.

10



1 =P(x) V Q(y)
2 ¢ = = P(x)

‘P=XxXRYy

Figur 22: 3 examples of infinite queries.

3.10 Domain independence

Given all tables (predicates) are finite, where does the "infinitely"of the results come from? It simply comes
from the domain. E.g. if we have a column that contains integers, then the domain of the column is all
integers, and not only the ones that are contained in the table. The same goes for strings or other types.
An "easy"way to understand if my thinking of the domain as a parameter of all queries, hence it is always
there in the "background"lurking. A query is then domain independent if the query gives the same result
no matter what domain is given as "input". For E.g. the conjunction "and"operator is domain-independent,
as the query will only contain results that are either in the first or second table and not in some arbitrary
domain. This is called safe, since they give a finite result.

Any formula without free variables has a finite query result, and is thus safe.

4 Relational Algebra

Describes the computation of the query as a sequence of table transformations. The result of one transfor-
mation can be used as input of another transformation.
All examples will use the tables given below in figure 23.

11



sid| bid | day
R1 | 22| 101 [10.10
58 | 103 |11.12

sid|sname |rating lage

22 | dustin 7 145.0

S1
31 | lubber 8 |565.5

58 | rusty 10 |35.0

sid sname |rating | age
28 | yuppy 9 [35.0
S2 |31|lubber| 8 |55.5
44 | guppy 5 |35.0
58 | rusty 10 |35.0

Figur 23: Example of tables from a boat rental. S:sailors, R:reserved.
4.1 Relational algebra normal form(RANF)

Is domain-independent, and thus always returns a finite result. Is syntactic overapproximation to ensure to
always get a finite result. Each subformlua is also finite of a RANF.

12



ranf(P(tl, .., tn)) < true

ranf(tl = t2) < false

ranf(= @) <= fv(p)={} and ranf(e)

ranf(e v y) < ranf(g) and ranf(y) and fv(e)=Ffv(y)
ranf(e A y) = ..

ranf(¥x. @) < false

ranf(Ix. @) < ranf(e)

ranf(¢) and ranf(y) or

ranf(@) and y=-x and ranf(}) and fv(y)cfv(e) or

ranf(@) and y=tl~t2 and (fv(tl)cfv(e) or fv(t2)cfv(e)) or
ranf(p) and y=-tl~t2 and fv(tl)cfv(e) and fv(t2)cfv(e)

Figur 24: Relational algebra normal form recursive definition.

4.1.1 Codds theorem

Theorem 4.1 For every domain-independent relational calculus query there exists an equivalent query in
RANF.

The theorem says that every domain independent in relational calculus, we can find a query in RANF that
computes the same result.

4.2 Selection (o)

Selects rows that satisfy the selection condition. Could e.g. be that a certain column has to have a value
above x, be equal to x or such. Cant have duplicates in result, since we just have a subset of the original
table, and the original table does not have duplicates (as it is a set).

= p "
O'rating>8(82) 25 TR T 7Tsname,rating(O'rating>8(82)) e

28 | yuppy 9 |35.0 yuppy 9
58| rusty 10 (35.0 Elsid,age. rusty 10
Sz(sid,sname,rating,age) Sz(sid,sname,rating,age)
A rating > 8 A rating > 8

Figur 25: Example of Selection, using tables in 23. In blue the equivalent is given in RC (note that ">"was
not explicitly allowed in the version we did of RC). See in the example to the right, that we first transform
it with a selection, and then take the output of that and use a projection.

4.3 Projection (7)

Removes columns. Takes as input the columns that we want to keep, and deletes the other columns not listed.
It will delete duplicates in the final output since we are dealing with sets, and sets cant contain duplicates.

13



sname | rating
Tsname,rating(S2) oy | o TTage(S2) Bl
lubber 8 35.0
dsid,age. quppy | 5 dsid,sname,rating.
SQ(sid,sname,rating,age] rusty 10 S2{sid.5name,rating.age} ﬁ

Figur 26: Example of projection, using tables in 23. In blue the equivalent is given in RC.

4.3.1 Extended projection with expressions ()

The list L contains arbitrary expressions such as arithmic operations (e.g. column x multiplied by 2) or
duplicate a column

rs age age

ﬂ'rating+sid—>rs,age,age(S1 ) 29 45.0 45.0
39 55.5 55.5

68 35.0 35.0

Figur 27: Example of projection, using tables in 23. Note that rating+sid is then renamed to rs.

4.4 Cross-Product (x)

If we have A x B, then each row of A is paired with each row in B. Like the Cartesian product. The resulting
schema is all of A’s combined with all of B’s.

sid | sname | rating | age | sid | bid | day
22 | dustin 7 45.0| 22 | 101 |[10.10
22 dustin 7 45.0 | 58 103 |[11.12
81 X R‘| 31 lubber 8 55.5 | 22 | 101 [10.10
31 lubber 8 55.5| 58 | 103 [11.12
58 rusty 10 350 | 22 | 101 |10.10
58 rusty 10 350 | 58 | 103 |11.12

81 (sid1,sname,rating,age) /\ R1 (sid2,bid,day)

Figur 28: Example of Cross product, using tables in 23. In blue the equivalent is given in RC.

4.5 Set-difference (—)

The set difference between the two tables. A — B, then the result is table A where all rows that are also in
B is removed. Must be union compatible.

14



sid|sname | rating |age
22 | dustin 7 145.0

S1 —S2

S1(Sid,sname,rating,age] /\ — SZ(Sid,sname,rating,age)

Figur 29: Example of set-difference, using tables in 23. In blue the equivalent is given in RC.

4.6 Union (U)

The union takes takes two tables and combines them into one. The tables must be union compatible: They
must have the same number of fields (columns), corresponding fields have the same type.

sid|sname | rating |age
22 | dustin 7 |45.0
28 | yuppy 9 |35.0
31 |lubber| 8 |55.5
44 | guppy 5 |35.0
58 | rusty 10 |35.0

S1US2

81 (sid,sname,rating,age) V S2(sid,sname,ra1ing,age)

Figur 30: Example of Union, using tables in 23. In blue the equivalent is given in RC.

4.7 Intersection (N)

The intersect takes the "intersect"of the two tables, which means takes the rows that are in both tables.
Must also be union compatible.

sid|sname |rating |age
31 |lubber| 8 [55.5
58| rusty 10 (35.0

81 (sid,sname,rating,age) /\ SZ(sid,sname,rating,age)
S1NS2

Figur 31: Example of Intersect, using tables in 23. In blue the equivalent is given in RC.
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4.8 Join ()
4.8.1 Condition join ()

Join two tables with a condition. Is equivalent of first taking the cross-product and then use selection with
the condition. Also called theta join. The resulting schema is the same as cross-product.

S1 MXs1.sid<R1.sid R

sid | sname | rating | age | sid | bid | day
22 | dustin 7 45.0 | 58 | 103 |11.12
31 | lubber 8 |555| 58 | 103 [11.12 A sid1 < sid2

81 (sid1,sname,rating,age) /\ R1 (sid2,bid,day)

Figur 32: Example of Condition Join, using tables in 23. In blue the equivalent is given in RC.

4.8.2 Equijoin

A condition join, but the condition only contains equalities.

S1 MXsiq R1

sid | sname | rating | age | bid | day

22 dustin 7 45.0 | 101 [10.10 S1 (sid,sname,rating,age) /\ R1 (sid,bid,day)
58 rusty 10 35.0( 103 [11.12

Figur 33: Example of Equijoin, using tables in 23. In blue the equivalent is given in RC.

4.8.3 Natural join

Natural join is just equijoin but on all columns. Combines all rows where the columns that are in both tables
are equal.

4.9 Antijoin

Not covered in the lecture, but only mentioned on slides.

4.10 Divison (=)

Not covered in the lecture, but only mentioned on slides.

4.11 Renaming (p)

Renaming can give a new schema to a table by changing the name of the columns. Often used if we later
want to join in a specific way or when doing cross-product and we have two columns with the same name,
we can rename one of them. Renaming can also be done when doing expressions and is denoted by an arrow.

4.12 Relational algebra on bags (duplicates allowed)

A bag is a multiset and is an unordered collection where duplicates are allowed. Like a set but allowed for
duplicates. All sets are bags, but not all bags are sets (if they contain duplicates). SQL uses bag semantics.
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age age
35.0 35.0
”399(82) 5.5 O'age<40.0(71'age(82)) 35.0
35.0 35.0
35.0

Figur 34: Example of transformation using bag semantics, using tables in 23.

All transformations are allowed in bag semantics, but in some transformations, like cross-product we no
longer have to delete duplicates. One major difference is also in the unions, intersect and set-difference, since
we now also have to look for how many times a certain element is in the bag.

4.12.1 Duplicate elimination ()

Deletes all duplicates in the table

gue age
= 35.0
J7'-55199(82) 20 5(7l'age(82)) 55.5
35.0
35.0

Figur 35: Example of removing duplicates using bag semantics, using tables in 23.
4.13 Aggregation operators

Not a part of relational algebra, and will often only spit out one result, and thus not a table that other
transformations can be used on. The most important are SUM, AVG, COUNT, Min, and MAX.
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SUM(rating) = 32 sid|sname |rating | age

COUNT(sid) = 4 28 | yuppy | 9 |35.0
MAX(age) = 55.5
AVG(rating) = 8 S2 |31|lubber| 8 |55.5

44 | guppy | 5 |[35.0
58| rusty | 10 [35.0

Figur 36: Example of aggregate operators, using tables in 23.

4.14 Grouping operator (71)

The list L either contains attributes or aggregate operators like AGG(A), where A is the attribute that the
aggregate operator is being at. For each distinct value in R for the attributes given in L it forms a group.
For each group it formed, use the aggregate operators given in L and name the column of the result of the
aggregator as given with an arrow.

cr |age

¥ age, COUNT(rating —> cr(©2) 3 [35.0
55.5

mr |age

¥ age,MAX(rating)—> mr(S2) 10 [35.0
8 |55.5

Figur 37: Example of the grouping operator, using tables in 23. The first example: For each unique age in
table S2, count how many ratings there are (renamed to cr). Second example: For each age, find the max
rating for rows with that age (renamed to mr).

4.15 Sorting (77)

Sort the table with regards to the first element given in L, then the second, third and so on.
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sid |sname |rating |age
44 |guppy | 5 |35.0
Trating(S2) |31 lubber| 8 |55
28 | yuppy | 9 |35.0
58| rusty | 10 |35.0

Figur 38: Example of the sorting operators, using tables in 23.

4.16 Outer join

When doing an outer join, we often have that not all rows are to be found in the other table, thus creating
"dangling tuples"or null values. When doing outer join we preserve them by just inputting 1 or by Null in
SQL. Two variants are left/right outer join that preserves only dangling tuples in the left/right table. The
regular just preserves both left and right.

S1 L R1 = S1p4R1

sid | sname | rating | age | bid | day
22 | dustin 7 45.0 | 101 |10.10
58 rusty 10 35.0 | 108 (11.12
31 lubber 8 555 | L 1

Figur 39: Example of the outer join operator, using tables in 23.

5 SQL

All direct SQL syntax is upper case like SELECT, WHERE, FROM, UNIQUE, etc. Same as with relational
algebra, the result of one query can be used as the input of another.

5.1 Basic SQL query

The basic SQL query is of 3 steps. First, we SELECT what we want from the table, then FROM what table,
and thirdly we can choose WHERE some condition in met. If we want to SELECT all columns in the query,
we just put a stat "*".

SELECT [DISTINCT] target-list
FROM relation-list
[WHERE condition]

Figur 40: Basic SQL query template. Optional are in brackets.

SELECT S.Name SELECT DISTINCT S.Name
FROM Sailors S FROM  Sailors S
WHERE S.Age > 25 WHERE S.Age > 25

Figur 41: Example of basic SQL query, using tables in 23. Finds names of sailors, from the database sailors
renamed to S that are over 25 in age. The distinct keywords removes duplicates.
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5.2 Select-Project-Join queries (SPJ)

The It first computes the cross-product between the given FROM tables, then discards rows that do not

match in WHERE conditions, and finally removes columns not specified in SELECT. Remove duplicates if
DISTINCT is put.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid AND R.b1d=103

sid | sname | rating | age | sid | bid | day

22 | dustin 7 450 22 | 101 |10.10
22 | dustin 7 45.0 | 58 | 103 |11.12
31 | lubber 8 55,5 | 22 | 101 |10.10
31 | lubber 8 55,5 | 58 | 103 |11.12
58 rusty 10 350 (| 22 | 101 |10.10
58 rusty 10 35.0 | 58 | 103 |11.12

Figur 42: Example of a SPJ SQL query, using tables in 23. Finds name of sailors who reserved boat 103. The
tables shows how it conceptually computes it by first finding the cross-product, then matching S.sid=R.sid
and then R.bid=103 and lastly returning the name of that row.

5.3 CREATE TABLE

Creates a table with given columns, their name and types. One column can only have one type.

CREATE TABLE Employees CREATE TABLE Departments
(ssn CHAR(11), (did INTEGER,
name CHAR(20), dname CHAR(20),
lot INTEGER, budget FLOAT,
PRIMARY EKEY (ssn)) PRIMARY EKEY (did))

Figur 43: Example of creating two tables with 3 columns.

5.3.1 PRIMARY KEY

The primary key is unique and can consist of one or multiple columns. See the section 2.2.1 on keys.

5.3.2 FOREIGN KEY

When doing relationships or such we use the keys of the entities to create a key that combines their keys.
We therefore use FOREIGN KEY (newNameForKey) REFERENCE Entity. SQL automatically knows the
key of the entity, so no need to specify, and we can therefore just rename the key to avoid confusion.
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CREATE TABLE Works_ In(
ssn CHAR(11l),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

Figur 44: Example of using a foreign key. Creates a relationship table by combining the two tables used in
example 43.

When referencing a foreign table, we can specify what should happen if something is updated or deleted
in the table we refer to. We then have 4 things we can do: NO ACTION, CASCADE, SET NULL, SET
DEFAULT. They are covered in the next sections.

5.3.3 NO ACTION

When something is updated /deleted in the reference table, we just do nothing.

5.3.4 CASCADE

Delete/update all tuples that refer to deleted /updated tuples. Often used in weak entities, since a weak entity
cant exist without its parent, and therefore must also be deleted.

CREATE TABLE Dep_Policy
(pname CHAR(Z@),
age INTEGER,
cost REAL,
ssn  CHAR(11) NOT NULL,
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees
ON DELETE CASCADE)

Figur 45: Example of using CASCADE. The reference table is Employees, and the new table Dep Policy is
a weak entity of Employees. When a row in Employees is deleted, then the corresponding row in Dep Policy
is also deleted.

5.3.5 SET NULL

When an update/deletion happens in the reference table, just set the value to NULL.

5.3.6 SET DEFAULT

When an update/deletion happens in the reference table, just set the value to a default value.

5.4 Inserting rows

Insert a row by defining the values by each column manually or by taking existing values from another table
using a SELECT statement.

21



5.5 Deleting rows

INSERT INTO Table
VALUESCA1, Az, A)

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

Figur 46: Row insert template and example.

INSERT INTO Table
Select-Statement

INSERT INTO Students(sid, name, login, age, gpa)
SELECT NULL, name, login, age, 0.0

FROM  Other_Students

WHERE school = ‘KU’

Figur 47: Row insert with SELECT statement template and example.

Delete all rows that match the WHERE statement.

DELETE FROM Table
WHERE Condition

DELETE
FROM Students S
WHERE S.name = ‘Smith’

Figur 48: Delete rows with WHERE statement template and example.

5.6 Updating rows

Update all rows that match the WHERE statement is true and SET the value to x.

UPDATE Table
SET A;=Exprq,A,=Expr,,..,A=Expr,
WHERE Condition

UPDATE Employees
SET salary = salary * 1.1
WHERE age >= 36

Figur 49: Update template and example. This updates all salaries by 10% for employees over the age of 35.
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5.7 UNION

UNION just combines the two tables or results if used between two different queries. UNION ALL does the

same but keeps duplicates.

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid
AND R.bid=B.bid
AND B.color=°‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid
AND R.bid=B.bid
AND B.color=‘green’

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid
AND R.bid=B.bid
AND B.color=‘red’
UNION ALL
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid
AND R.bid=B.bid
AND B.color=‘green’

Figur 50: Example of UNION and UNION ALL, using tables in 23. Finds sid’s of sailors who reserved a red

or a green boat.

5.8 INTERSECT

Takes what is in both two tables or the result if used between queries then the result has to be in both

queries.

SELECT S.sid
FROM

INTERSECT
SELECT S.sid
FROM

Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color=°‘red’

Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color=‘green’

Figur 51: Example of INTERSECT, using tables in 23. Finds sid’s of sailors who reserved a red and a green

boat.

5.9 EXCEPT

The set difference. Removes all rows that happened to be in the other table/result of query.

SELECT S.sid
FROM
WHERE S.sid=R.sid

EXCEPT
SELECT S.sid
FROM

WHERE S.sid=R.sid

Sailors S, Boats B, Reserves R

AND B.color=‘red’

Sailors S, Boats B, Reserves R

AND B.color=‘green’

AND R.bid=B.bid

AND R.bid=B.bid

Figur 52: Example of EXCEPT, using tables in 23. Finds sid’s of sailors who reserved a red and not a green

boat.
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5.10 Joins
5.10.1 CROSS JOIN

The same as the cartesian product. Is used between two tables, and can also just be denoted with a comma
" "between the tables.

name address name address
Harrison Ford 789 Palm SELECT * Harison Ford 789 Palm
Iben Hjejle Dster Alle 4 FROM MovieStar CROSS JOIN MovieExec Iben Hjejle Dster Alle 4
Mads Mikkelsen Sverresgata 23 Sandra Bullock 564 Center B

name address name address

Harrison Ford 789 Palm Harison Ford 789 Palm

Harrison Ford 789 Palm Iben Hjejle Oster Alle 4

Harrison Ford 789 Palm Sandra Bullock 564 Center B

Iben Hjejle Oster Alle 4 Harison Ford 789 Palm

Iben Hjejle Oster Alle 4 Iben Hjejle Oster Alle 4

Iben Hjejle Oster Alle 4 Sandra Bullock 564 Center B

Mads Mikkelsen Sverresgata 23 Harison Ford 789 Palm
Mads Mikkelsen Sverresgata 23 Iben Hjejle Oster Alle 4
Mads Mikkelsen Sverresgata 23 Sandra Bullock 564 Center B

Figur 53: Example of CROSS JOIN. Would have the same result if we just put a comma instead of CROSS
JOIN.

5.10.2 Theta Join

Use CROSS JOIN but have a WHERE statement to specify what columns have to be equal. Or use the JOIN
and ON statement to specify what column should be compared.

SELECT S.*, E.* SELECT S.*, E.*

FROM  MovieStar S, FROM  MovieStar S
MovieExec E JOIN MovieExec E

WHERE S.name = E.name ON S.name = E.name

Figur 54: Example of Theta joins.

5.10.3 Equijoin

Using INNER JOIN to join the two tables USING to denote what column that has to be equal for the two
tables.

SELECT *

FROM  MovieStar S
INNER JOIN MovieExec E
USING (name)

Figur 55: Example of Equijoin.
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5.10.4 NATURAL JOIN

The columns that the two tables have in common they must match. Like equijoin on all common columns.

SELECT *
FROM MovieStar
NATURAL JOIN MovieExec

Figur 56: Example of NATURAL JOIN.

5.10.5 OUTER JOIN

A special join that also joins non matching rows, but can then have dangling tuples.
LEFT OUTER JOIN: Returns non-matching tuples from the left table.
RIGHT OUTER JOIN: Returns non-matching tuples from the right table.
FULL OUTER JOIN: Returns non-matching tuples from both tables.

SELECT DISTINCT S.sid, R.bid
FROM  Sailors S
LEFT OUTER JOIN
Reserves R
ON S.sid = R.sid

sid

bid

22

101

58

103

31

NULL

sid bid day
Reserves | 22 101 10.10
58 103 [11.12

sid

sname rating |age

Sailors

22 | dustin 7 |45.0
31|lubber| 8 |55.5
58| rusty 10 (35.0

Figur 57: Example of LEFT OUTER JOIN.

5.11 Null values

Values in rows that are missing/unknown/not assigned or such are denoted by Null.

5.11.1 Three-valued logic

Since we sometimes use predicate logic to compare fields e.g. age>20, when age is then Null then the whole
operation return Null, thus creating three-valued logic.
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X y xANDy xORy NOTXx
TRUE TRUE TRUE TRUE FALSE
TRUE NULL NULL TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
NULL TRUE NULL TRUE NULL
NULL NULL NULL NULL NULL
NULL FALSE FALSE NULL NULL
FALSE TRUE FALSE TRUE TRUE
FALSE NULL FALSE NULL TRUE
FALSE FALSE FALSE FALSE TRUE

Figur 58: Truth table of the three-valued logic.

5.11.2 IS NULL

Since predicate logic just returns Null when compared to Null, if we then want to know if some value is null,
we then use IS NULL, that returns true if the value is null.

SELECT S.sid
FROM  Sailors S

LEFT OUTER JOIN

(SELECT sid

FROM Sailors NATURAL JOIN Reserves R

WHERE R.bid = 103) AS S_103

ON S.sid = S_103.sid
WHERE S_103.sid IS NULL

Figur 59: Example of using IS NULL.

5.12 Expressions and strings (AS and LIKE)

When doing arithmetic operations on an entire column (e.g. multiply all by 2 or subtract 5) we can then
rename the result of that using AS.

To match string we can use LIKE where " "matches a single arbitrary character and "%"matches 0 or more
arbitrary characters.

SELECT age, age-5 AS age5, 2*age AS age2
FROM Sailors
WHERE  sname LIKE '_u%'

Figur 60: Example of using AS and LIKE. Finds the age, age-5 and age times 2 of sailors who’s names second
letter is u.

5.13 table expression WITH

Define a table outside as a query using WITH that can be used in a later query. It is like a nested query,
but to keep the queries simpler, we can move it out and use a WITH instead or if we want to use it multiple
times.
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WITH S_1@3(sid) AS (
SELECT sid
FROM  Sailors NATURAL JOIN Reserves
WHERE bid = 103
D
SELECT S.sid
FROM  Sailors S
LEFT OUTER JOIN
S_103
ON S.sid = S_103.sid
WHERE S_103.sid IS NULL

Figur 61: Example of WITH. Here it creates a new table called S 103 with one column sid.

5.14 Nested queries with correlation

When doing a nested query, it is also possible to reference the parent query like in example 62 below.

SELECT S.sname

FROM Sailors S
WHERE EXISTS (SELECT *
FROM Reserves R

WHERE R.bid=1@03 AND S.sid=R.sid)

Figur 62: Example of a nested query with correlation. Here the nested query uses the sid from the parent
query. This query returns all names of sailors who have reserved boat 103.

5.15 Set-comparison operators (ANY/ALL)

Using the operators >, <, =, <=, >=, <> (denoted as "op", short for operator), we can use op ANY or OP
all.

op ANY: Checks if any (atleast one) satisfies this.

op ALL: Checks if all satisfies this.

SELECT *
FROM  Sailors S
WHERE S.rating > ALL (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname='lubber')

Figur 63: Example of a using op ALL. The query finds all sailors whose rating is greater than all sailors called
lubber.

5.16 Aggregate operators

Same as relational algebra covered in section 4.13. Also only gives one value,
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SELECT COUNT (*)

COUNT (%) FROM  Sailors S

COUNT ( [DISTINCT] A)

SUM (' [DISTINCT] A) SELECT AVG (S.age)

AVG ( [DISTINCT] A) FROM  Sailors S

MAX (A WHERE S.rating = 10

MIN (A)

\S;ng/e column SELECT COUNT(DISTINCT S.rating)

FROM  Sailors S
WHERE S.sname = 'lubber'

Figur 64: All aggregate operators and some examples. First counts all sailors, second finds the average age
of sailors with a rating of 10, and the third counts ratings (without duplicates) of sailors with the name of
lubber.

5.17 GROUP BY

If we want to find the minimum age of all the different ratings, like in the example 65 below. This is not
good, since we won’t get the result in a table, but rather 10 different values just spit out.

SELECT MIN(S.age)
Fori=1,2,..,10: FROM  Sailors S
WHERE S.rating = 1

Figur 65: Example of getting the minimum age for all different ratings.

To fix this we group them, as covered in relational algebra in section 4.14. It again create a group for each
distinct row of the attribute we group over, and then use the aggregate operator for that value.

SELECT [DISTINCT] target-list
FROM relation-list

[WHERE condition]

GROUP BY grouping-list

SELECT  S.rating, MIN(S.Age)
FROM Sailors S
GROUP BY S.rating

Figur 66: Query template when using GROUP BY and example of getting the minimum age for all different
ratings using GROUP BY.

5.18 HAVING
HAVING is used in combination with GROUP BY to only make a group if the condition is met.
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SELECT [DISTINCT] target-list
FROM relation-list

[WHERE qualification]

GROUP BY grouping-list

HAVING  group-qualification

SELECT  S.rating, MIN(S.Age)
FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING  COUNT(*) > 1

Figur 67: Query template when using HAVING, and example. The query finds the age of the youngest sailor
with age >=18 for each rating with at least 2 such sailors.

5.19 ORDER BY (sorting)
Sorts/orders the result by a given attribute.

FROM Sailors S
GROUP BY S.rating
ORDER BY avgage

SELECT  S.rating, AVG(S.age) AS avgage

Figur 68: Example of ORDER BY. The query finds the average age for each rating and then orders the

results in ascending order by average age.

5.20 CONSTRAINT

A query can be used to create a CONSTRAINT, and can also be named. Is like adding an integrity constraint
(see section 2.2). If the constraint is not met, we can tell the DMBS to handle it, and e.g. not allow a row /tuple

that does not satisfy the constraint.

day DATE,

CREATE TABLE Reserves (
sname CHAR(10),
bid INTEGER,

PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK ('Interlake' <>

(SELECT B.bname

FROM Boats B

WHERE B.bid=bid)))

Figur 69: Example making a CONSTRAINT on a table. This constraint make it such, that the table must

not contain a boat name called "Interlake".
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5.21 ASSERTION

A constraint over multiple tables/relations.

CREATE ASSERTION smallClub

CHECK

( (SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B) < 100 )

Figur 70: Example making an ASSERTION over multiple tables. This assertion makes sure that the sum of
numbers of sailors and boats is below 100.

6 Data redundancy

6.1 Functional Dependencies (FDs)

A functional dependency between sets of attributes X and Y holds over a relation R if, for every instance r
of R is
wx (t) = mx (u) implies 7y (t) = 7wy (u) for all t € r and uw € 7 (1)

In words, it means that if the X value is the same for two tuples, then the Y value must also be the same.
Hence it is like a function, where one x value must correspond to exactly one y value. An example could be
if sailor A has a rating of 9 and thus an hourly wage of 100, and if sailor B also has a rating of 9 then they
have a functional dependency if B must have an hourly wage of also 100.

6.1.1 Closure

F+ is the closure of a set of FDs that are implied by F. E.g. if we have the FDs {K — B,B — D,B —
A,0 — P} then K+ ={K,B,D, A}.

6.1.2 Amstrongs Axioms

Reflexivity: If Y C X, then X — Y.

Augmentation: If Z — Y, then XZ — Y Z for any Z.
Transitivity: If X - Y and Y — Z, then X — Z.
Following from those axioms are the following:

Union: If X - Y and X — Z then X — Y Z.
Decomposition: If X - Y Z, then X - Y and X — Z

6.1.3 Example of using FD axioms

Given a schema Contracts(cid, sid, jid, did, pid, qty, value) (short: CSJDPQV) where C is the key and
therefore C' — C'SJDPQV. We have to FDs other than the key: JP — C and SD — P. Check whether
SDJ — CSJDPQV:

SDJ = JSD Augmentation JP Transitive C CSJDPQV
SD—P JP—C

And hence SDJ is a super key for the table.

6.2 Decomposition of a relational scheme

Instead of storing the entire table, we can use functional dependencies to decompose the table into multiple
tables to avoid too much redundancy.
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6.2.1 Problems with decompositions

We must always consider the trade-off: Issues listed below vs. redundancy.
e Expensive: Some queries become more expensive. E.g. if we have to multiply two columns together.

e Given instances of the decomposed relations, we may not be able to reconstruct the corresponding
instance of the original relation.

e Checking dependencies may require joining the instances of the decomposed relations.

6.2.2 Lossless-join decomposition

Decomposing R into X and Y is a lossless-join with respect to a set of FDs if for every instance r satisfies
the set of FDs:
mx(r) X<y (r)=r

In other words, it means that we must not generate more or less tuples than the original. E.g. we have to be
able to reconstruct the original table again using the decomposition.
This avoids problem 2 listed in section 6.2.1.

N (B = >
N N
ool w(

7iAB TARC
A | B B | C
1 2 2 3
4 5 5 6
7|2 X 2 | 8

=S (N [= D
N | @
W (oo w(d

T2

Too many new

Figur 71: Example of a decomposition that creates new tuples, and is therefore not a lossless-join.
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6.2.3 The chase test

The chase test can be used to check whether a decomposition is a lossless join. Given a decomposition and
FDs, we join the decompositions and then use FDs to try and prove whether the tuples in the join must be
in the reconstructed table or not.

The tuples A B C D
of R projected a b C ds
onto
AB, I /%2 a b T ﬁé d
BC, v
cb.———  aj \ b3 c / d
\
\ /
UseB — A \ Use C — D

We’ve proved the
second tuple must be t.

Figur 72: Example of a chase test for if the tuple t = abcd is in the table R = ABC D, decompositions AB,
BC and CD and FDs C — D and B — A. This decomposition is lossless, since we can prove that the tuple
is in the join using FDs.

A B C D
These projections
rejoin to form f:—: Cy d
- \—i‘—\—\—__\_\—\k
abcd a b c d{ d
ds bs & [ d
i
/
UseC — D

Figur 73: Example of a chase test for if the tuple t = abcd is in the table R = ABC D, decompositions AB,
BC and CD and FD C' — D. This decomposition is lossy, since we cannot prove that the tuple is not in the
join.

6.2.4 Dependency-preserving decomposition

If a table R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, Y and Z, then all FDs
that are given to hold on R must also hold. This avoids problem 3 is section 6.2.1.

A decomposition is a dependency preserving if the closure of the union of FDs of the decomposed tables
is equal to the closure of the FDs from the original table. I.e. the decomposition uses the original FDs to
decompose to preserve dependency. Given formally as

(Fx UFy)+=F+
A dependency preserving decomposition does not imply a lossless join.

6.3 Boyce-Codd Normal Form (BCNF)
A table is in BCNF if, for all X — Y in F'+, Y C X or X contains a key for the table.

6.3.1 Method to decompose into BCNF

Given a table R with FDs F. If X — Y violates BCNF, then decompose it into R — Y and XY . We keep
doing this until all tables are in BCNF.
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The result is not unique when decomposing into BCNF, as we can decompose in different orders.
First we start of by finding all keys. And then check for all FDs if they violate, and if they do, then "remove"the
right side from the table and create a new table with the left (X) and the right side (Y).

6.3.2 Example of decomposing

An example of decomposing the table CTHRSG with the FDs:
C—-T, HR—C,HT - R, HS - Rand CS — G.

CTHRSG
Jv C-T
CT+ CHRSG —ooo—- G+ €SG + CHRS
J HR - C HR - C
HRC + HRSG HRC + HRS
BCNF: CT + HRC + HRSG BCNF: CT + CSG + HRC + HRS

Figur 74: Two examples of decomposing the table into BCNF.

Here we have shown two different decompositions. We keep dividing the tables until no Y in FD X — Y
is in the table along with a X. In other words, we always try to remove the "right side"of all FDs as long as
the "left side'"is existing in the table. Walking through each example:

The black decomposition:
First we establish a key, which in this example is H.S (just find the closure of each FD and find one that can
find all columns).

1. C and T are in CTHRSG, and we, therefore, have to "remove"T from the table, and thus decompose
into CT 4+ CHRSG.

2. HR and C are in the table; therefore, we have to "remove"C by creating a new table H RC and removing
C from the old table.

3. We then look through all FDs, and see that no FD has its "left side"and "right side"in the table H RSG:

e (' — T are both not present.

e HR — C, C is not present.

e HT — R, T is not present.

e HS — R are BOTH present, but as HS is the key, it cannot be split up further. !
e CS — G, C is not present.

The red decomposition:
We do the same thing, but we just take a different order of FDs to decompose from.

6.4 Third normal form (3NF)
A table R with FDs F is in 3NF if for all X — Y in F*:

e YV C X (called trivial FD) or

e X contains a key for R or

1See if we split it, it would instead increase data redundancy since the entire key would have to be present in two places.

33



e Each attribute in Y is part of some key for R (each attribute in Y is prime)

If a table is BCNF, it is also 3NF. Some redundancy is possible compared to BCNF, but used when BCNF
gives worse performance or other considerations.
Algorithm to convert into 3NF is not given is this course.

6.5 Normal Forms
e First normal form (INF).
— The domain of each attribute contains only atomic values.

— No duplicate data.

— Each entry contains only one value.

All columns are regular.
e Second normal form (2NF).

— INF.

— No non-prime attribute is dependent on any proper subset of any key of the table.
e Third normal form (3NF).
— 2NF.

— Every non-prime attribute is directly dependent on every superkey of the table.

7 Other stuff covered in last lecture

7.1 VIEWSs

Derived tables from our database using logic. Is used to show data to a higher-level user, e.g. to a customer,
who does not need to see the entire table, but maybe only one or two columns. It can also be made to make
queries easier/faster /natural. Are used a lot in "real"applications.

Views _[ | External1l | External N
— Logical Data
\ / Independence

Relations _:,Jl'j Conceptual

h I Physical Data
Storage . . Independence
structures, __J Physical
indexes [

Figur 75: Structure of DBSM
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CREATE VIEW Red_Green_Sailors (sid, sname) AS
SELECT DISTINCT S.sid, S.sname
FROM  Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
AND (B.color=‘red’ OR B.color=‘green’)

DROP VIEW Red_Green_Sailors

Figur 76: Example of a view in SQL. This creates a view that only contains the sid and sname of sailors who
have reserved either a red or green boat.

7.1.1 Virtual vs. materialized view

A virtual view does not "create"the view when it is made, but only when needed. A materialized view

is created and stored when it is made. One problem is that some DBMS does not update the view when
the original table is updated, hence the view does not have the correct data. We always need to consider
advantages when choosing.

CREATE MATERIALIZED VIEW CA-CS AS

SELECT C.cName, S.sName

FROM College C, Student S, Apply A

WHERE C.cName = A.cName AND S.sID = A.sID
AND C.state = ‘CA’ AND A.major = “CS’

Figur 77: Example of a materialized view in SQL.

A materialized view can be updated whenever the original table is changed, daily, event-based (when
e.g. 10 updates have been made), or at some other specified time. If we do the update immediately after an
update we get a view that is always updated, it can however be expensive. And the other way around of only
doing it e.g. daily.

7.2 TRIGGER

An event condition action rule: When an event occurs, check some condition; if true, do some action. We can
check events on either row level or statement level. Row level is updated to a single row, and statement level
is single update that changes one or multiple rows.
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CREATE TRIGGER name
BEFORE [AFTERIINSTEAD OF events

[ referencing-variables ]
[ FOR EACH ROW ]
WHEN ( condition )

action

Figur 78: Trigger template in SQL

Trigger name in

CREATE TRIGGER AUR_NetWorthTrigger database schema
Event: After update of attribute AFTER UPDATE OF netWorth ON MovieExec
REFERENCING
OLD ROW AS OldTuple
NEW ROW AS NewTuple
Row level trigger ~ FOR EACH ROW
WHEN (OldTuple.netWorth > NewTuple.netWorth) Conditon
UPDATE MovieExec
SET netWorth = OldTuple.netWorth Acton

Prevent lower values NOTE: Not PostgreSQL syntax

WHERE cert# = NewTuple.cert#; Reset to old value

Access to tuple values

Figur 79: Trigger example in SQL, NOT pSQL syntax. Whenever networth of a movieExec is updated we
check whether it is larger than their old netWorth. If it is not larger, we keep the old netWorth.

Using postgressSQL we have to use python to handle the trigger, and it gets complex quite quickly.

7.3 Transactions

A transaction is made to reliably have concurrency in a DBMS, such that multiple users can insert/update
tables. It has to have the ACID properties in order to reliably do this:

e Atomicity: transactions are all-or-nothing (we make them to the end or we don’t)
e Consistency: transactions take database from one consistent state to another
e [solation: transaction executes as if it was the only one in the system.

e Durability: once the transaction is "committed", results are persistent in the database
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Transaction T1: TRANSFER Transaction T2: INTEREST

BEGIN; |BEGIN;
UPDATE accounts UPDATE accounts
SET balance = balance - 10 SET balance = balance * 1.01;
WHERE name = 'Dmitriy’; COMMIT;
UPDATE accounts « BEGIN and COMMIT keywords
SET balance = balance + 10 delimit transaction
WHERE name = “Magnus"; « COMMIT confirms that work
COMMIT; should be made durable in the
database

Figur 80: Trigger example in SQL. The code within "begin"and "commit"is executed atomically.

7.4 Index

Normally when the DBMS searches for instances e.g. when joining or searching it uses a naive nested ap-
proach, which is usually relatively slow. To improve this, we can order the data using indexing. E.g. strings
alphabetically or numbers sorted (but only one column). This will improve the runtime by much since the
DBMS knows when to stop and hence does not need to look through the entire table.

CREATE INDEX covidi ON covid(location, new_cases, date);
SELECT DISTINCT X.location, X.date, count(Y.date) SELECT DISTINCT X.location, X.date, count(Y.date)
FROM covid X JOIN covid Y FROM covid X JOIN covid Y
ON X.location = Y.location AND X.new_cases > Y.new_cases ON X.location = Y.location AND X.new_cases > Y.new_cases
GROUP BY X.location, X.date GROUP BY X.location, X.date
(a) 25s (b) 7.5s

Figur 81: Two queries, that compute the same, but (b) uses indexing,.

7.5 B+ Tree algorithm

The B+ tree is one of the most used indexing for range indexing. It is like a binary tree, but with multiple
branches for each node. Each node normally has up to between 100-200 fanouts. Each "node"is usually a set
of entries with space for 2d entries, and thus must always remain at least half full with d entries (except the
root). Do note, that only the bottom (leaf nodes) have the data, the other nodes are only for indexing (noted
by a star in the figures)
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Root

17

|
| \ | \
. '. N - | N _. B
/ - . \ P ., Y P | T, T,
2+ (3 5 |7 |8 14* [16* 22* 24* |27 29+ 33* |34+ (38* [39°
Figur 82: Example of a B+ tree
7.5.1

Searching

When searching for an element in a B+ tree just use the same procedure as with a binary tree, but look at
ranges instead. E.g. from 82 above, if we wanted to search for 7, we first compare 7 < 17, and go left. Then
we see that 5 < 7 < 13 and then go to the subtree between 5 and 13, and then just look through that subset
to find 7.

7.5.2 Inserting

When inserting an element we just search for it, and then place it where we end up in the search. If the
subset is full, we have to split the overfull node up, and create two new. Without overfilling see example 83.

Root \

13 |[17 |[24 |30

13 17 24 30
— —~ s —~ —~ ~ ~
ERlT] [be[ 1] Rl ] bRkl ] bopefe] FEFT] 1] k] plrpl ] pperf]
(a) Before

(b) After
Figur 83: Inserting 23 into the tree

As mentioned when the subset node is full, we have to split the overfull node. To do this, we move the

middle of the subset into its parent node to create two new ranges. However, This problem can cascade up,
as the parent set can also get overfull, but we just do the same procedure. See the examples in the figures
below where we try to insert 8 into a full subset:
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Overfull!

N

ol

P P R g
ol G Gl T I < W 3 A A S o] e b ]

Figur 84: First we search for 8, and then insert it into the leaf node. We note that it is full, so we have to
split it.

copied

Root \

L / N N P TN T
cREEE] EELLT EEEL] R OFFFOFF OFFEFFE EEEF
Figur 85: We split the leaf node and create a new leaf node to the right, we then take the first node to the
right of the middle as the lowest in the new node. This node is then larger than everything in the old and
smaller than everything in the new node, so we use that in the parent node for indexing.

pushed

e

(FEFERD)
i

[ /
/

/ \ |
Famm T~ Lo~ | P P / N P TN J P —
ol I I G G I 5 A U R A A S S e S R S A S S R S S N G S S G

Figur 86: When 5 is inserted in the parent node, we see that it is also full, we then have to split. We take the
middle element, and use that as the new root. Note that since these are all indexes and not actual datapoints,
17 is only seen once in contrary when we had to split the leaf node and make two 5’s. Also note that the tree
height now has increased.

7.5.3 Deleting

Search for the element, and then just remove it, see figure 87. That was the easiest of the 3 cases that a delete
can create. First is do nothing, since it is not underfull. The next is redistribute if the node is underfull. And
the third is merging/deleting nodes.

First case: Do nothing
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Root

/ \
/ - \ — — | —— —
[~ \ o~ —~ ] —~
‘2. |3‘ | | ‘ |5- |7- ‘8' ‘ | |M' |15- I | || |20. |22. | HZC' |27. PQ' | ||33. |34- F@' Pﬂ' |

(b) After

/ \

/ \

[~ 1\ — —~ | —
O G O O U SR A W R A S S S S

(a) Before

Figur 87: Deleting 19* from the tree. Case 1, do nothing

Second case: Redistribute
If the node is underfull we have to redistribute the remaining elements, se example below of deleting 20%*:

Root

Root

5 13 5 13 24 (|30
\ T
Underfull
7~ T~ P . ~ N T -_— P
AaENEaNNEENNGEEEAN SN AN EANEEENERE S EaN 5533

Figur 88: Remove 20*, and we note that the leaf note is now underfull.

Root

Redistribution: note how
entry is copied up

lele] ]

2] | PR PPl

— — . — —
CELTIEF L el LIkl Dbl 1 e bl

Figur 89: Since it is underfull, we have to redistribute the elements from another leaf to the underfull node.
We do this by taking the smallest element from its right sibling (or largest from the left sibling), changing
the index to fit the new intervals and put the element in the leaf node. The left image is just an example of

how to redistribute from the right to the left node.

Third case: Merge/delete
In the last case we again remove another element making the node underfull, but now its sibling also becomes

underfull if we redistribute. We now have to merge/delete a node. See example below of deleting 24*:
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Root

Root

Underfull

L PR FFFF] FF T FrrFL ) FRIEL THE T P FEF)

Vd

TN ey
LT IE T Jiete] ]

Figur 90: First we find and delete 24*. And then note that the leaf node is underfull.

Root

Merge: note how
entry is deleted

cLLL) L] — —~ —
FFI T FFFT I FFFT FFFP]

Figur 91: Since the sibling node only had 2 elements, and thus will become underfull if we redistribute, we
have to merge. We therefore delete the underfull node, and if the sibling has room (which this has), we move
the element into that node, thus the nodes have been merged. We then also remove the index for the range

of the deleted node.
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Root

17 Merge: note how
entry is deleted

(T= WT7)

Underfull

2¢ |3 5% |7 |8* 14* [16* 22% |27 [29* 33* |34+ [38* P9

Figur 92: Since we deleted from the parent index node, this has become underfull. We have to handle this as

well.

Merge: note how entry
is pulled down (contrast
with merge of leaf node)

[/ Tl FEL TP o [ FR ] |F ]
[\ AN I
Figur 93: We then merge the index nodes, thus decreasing the tree height.

7.5.4 Composite key search

Each element in e.g. a B+ tree can have multiple values (represented by multiple columns in a table for
example). But when ordering the data by indexing, we can only do that for one variable for the first order,
but we can use another variable as a second order sorting criteria if two first order variables are equal.
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(b,6) | |(e,8)

@1)" |@3) (b2 (b,6)" |(d.3)" |(e.4) (e.8)" (9.3)

Figur 94: B+ tree with multiple values. Sorted after first value as a first order, and then the second value if
the first are equal.
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